
Awkwardly: A Response Suggester
CS224N Final Project

Quinlan Jung
Department of Computer Science

Stanford University
quinlanj@stanford.edu

Kai-Chieh Huang
Department of Electrical Engineering

Stanford University
kaichieh@stanford.edu

Abstract

Replying to emails can be a daunting task especially if users are bombarded with
hundreds of emails per day, or if they struggle with constructing well-formed so-
cially acceptable replies. We present Awkwardly, a novel response suggester that
generates top replies shown to a user in real-time. These short responses can be
selected as a reply in a chat or email context. In this paper, we introduce meth-
ods to generate candidate responses. First, we generate a large pool of responses
using various seq2seq LSTM neural network architectures. Next, we group and
rank the responses using semantic intent clustering. These top ranked responses
are relevant and diverse, and they are the ones that are ultimately shown to the
user.

1 Introduction

Replying to emails is a difficult and time consuming task. The average person receives 97 business
emails and 88 personal emails per day. [1] Time spent on emails is significant, as the average US
employee spends 28% of their work week replying to emails. [2]. Clearly, there is a need to reduce
the processing time required to generate a well-formed response to emails a user must reply to.

We present Awkwardly, a response suggester. Awkwardly is a deep learning NLP model that can
generate text responses from input such as email, chat or dialog. The model will take in a prompt
such as ’Hey, what day are you free?’ and suggest replies such as ’Tomorrow works for me’ and
’Thank you but now is not a good time’. If the user feels that one of the suggested replies is
appropriate, they select one of them, modify it as needed and send it to the recipient.

Given an input, we gather a set of similar input ranked in terms of semantic intent. Then we feed our
set through a seq2seq multilayer LSTM to generate a large pool of responses. We also optimize our
LSTM by adding an attention mechanism to allow the decoder more direct access to the input. Our
encoder LSTM cell receives the conversational prompt in the form of Glove vectors. Our decoder
receives one-hot vectors of the user’s reply that maps to corresponding pre-trained embedding during
training, and one-hot vectors of it’s own output during testing. The output of our network is a stream
of one-hot vectors, representing a response.

Next we take our set of responses to group and rank them using semantic intent clustering [5] and
the EXPANDER algorithm. [6] Once the responses have been clustered, we filter out the ones with
low readability. We only keep responses that have a Flesch-Kincaid score above 60, which ensures
that each response is written in plain English and is understood by 13 to 15 year old students. The
highest ranked responses in each cluster is presented to the user.

1

2 Related Work

Over the past year, neural machine translation (NMT) has become the state of the art implementa-
tion for language translation. [7] The first encoder-decoder model using two basic RNN cells was
presented by Cho et al. [8] Multi-layer cells have been successfully used in encoder-decoder models
too. [9] The advantages of a seq2seq encoder-decoder model over a general feed forward neural
network is that it can remember input from previous time-steps. Also it conditions the generated
words on both input and previously generated outputs to predict a meaningful response.

In the above NMT implementations, every input has to be encoded into a fixed-size state vector, as
that is the only thing passed to the decoder. To allow the decoder more direct access to the input, an
attention mechanism was introduced by Bahdanau et al., which allows the decoder to peek into the
input at every decoding step and pay attention to some key words. [10]

In addition to the wide success NMT has seen in language translation, it is also adopted for context-
answer type problems. Chatbots have been made using the encoder-decoder model, using the mes-
sages leading up to the user’s reply as input to the encoder and the user’s reply as input to the decoder.
[11] Email suggesters have also been built on such models by Kannan et al, grouping replies using
semantic intent clustering and choosing the most appropriate one from each cluster. [5]

3 Approach

Our high level algorithm to generate a set of suggested responses consists of the following steps:

1. Given an input, gather a set of similar inputs.
2. Feed the input set through a seq2seq neural network to generate a set of responses.
3. Cluster and rank responses.
4. Perform additional filtering to ensure baseline readability.
5. Present the highest ranked response in each cluster to the user.

Figure 1: A flowchart of our high level algorithm.

We define the term ’context’ to mean the part of the conversation leading up to the user reply and
’response’ to mean the reply the user responded with based on the context.

3.1 Baseline Seq2Seq Model

For our baseline neural network, we closely follow the seq2seq model presented by Cho et al. [8]
The inputs to the encoder are one-hot vectors of the context, and the inputs to the decoder are one-

2

Figure 2: # Words vs Word Frequency in the Twitter Corpus [14]

hot vectors of the response during training, and one-hot vectors of its own output during testing.
However, instead of using a basic RNN cell, we use a basic LSTM cell for both the encoder and
decoder, and instead of using a Adadelta optimizer, we use the Adam optimizer. We also add an
additional Dropout wrapper around each cell, setting the dropout rate to 0.5. We added the Dropout
wrapper to prevent overfitting, with the suggested dropout rate being 50% as it has often been found
to result in the maximum amount of regularization. [13]

For our data, we use Marsan Ma’s curated twitter corpus of 800, 000 context-responses. [12] We set
the context to be the original tweet, and the response to be the user’s reply to said tweet. While Cho
et al’s dataset is significantly larger (61M words), our dataset has 9M words.

We perform basic tokenization of each word in our dataset. We use an initial vocabulary of the
|V | = 6000 most frequent words seen in the corpus. All other words get replaced with an UNK
token. In order to optimize for training time and memory usage, we choose a vocabulary size of
|V | = 6000, which means 3% of our tokens are UNK. We ensure we do not exceed the recommended
threshold of 5% unknown tokens. [15]

We trained our baseline for n = 40000 epochs. During test time, we forbid the decoder from
outputting the UNK token. If the UNK token is the token predicted with highest probability by ŷ,
we choose the token with second highest probability instead.

After n = 40000 epochs, we see that our model outputs grammatically correct responses, but the
variation is poor (> 90% are variations of generic responses such as ’I think you are not racist’, ’I
dont know’, ’I love you’ and ’The media is a disgrace’).

3.2 Additional Seq2Seq Optimizations

3.2.1 Glove Inputs

We use pretrained Glove vectors on a Wikipedia corpus as input to the encoder instead of the one-hot
vectors we used in our baseline. We initially trained our neural network on embedding dimensions
of D = 50, but increased it to D = 300 due to the low variation of responses (the model kept
outputting ’I love you’ and ’I dont know’ for most prompts at D = 50).

3.2.2 Larger Vocabulary Size

We increased the vocabulary size to |V | = 100000. Initially, we were skeptical performing this
optimization would work, but discovered that having a < 1% UNK tokens in the training set greatly
increased the quality of responses. (ie) Instead of outputting ’I love you’ in response to the prompt
’Its my birthday!’, we received the higher quality output of ’Happy birthday!’.

3.2.3 Multilayer LSTM

Instead of having each cell be a Basic LSTM, we use a 3-layer stacked LSTM. It is recommended
that going from a basic LSTM cell to a stacked LSTM can help to obtain better results by allowing
for greater model complexity. [17]

3

3.2.4 Attention Mechanism

We further enhanced our seq2seq model with the attention mechanism presented by Bahdanau et al
to allow the decoder focus on certain ranges in the input sentence. [10] By introducing an adaptive
weight and calculating a weighted hidden state using the hidden states from all time steps, we can
provide the seq2seq model with additional information and allow the model to pay attention on
particular words inside the input context.

3.3 Baseline Response Clustering and Ranking

In order to cluster and rank our responses (Step 3 of our high level algorithm), we perform k-means
clustering and get the nearest neighbours to each centroid. 1

To group inputs, we perform k-means clustering on vectors derived from our inputs. These vectors
were an average of the Glove representation of each input token. We perform k-means clustering on
Glove vectors of D = 300 dimensions.

To ranking each group, we find the nearest neighbour measured in Euclidean distance and output
the nearest vector to each centroid returned by k-means. To find the nearest neighbour, we construct
a k-dimensional tree from our response set. [16] Then, we output the nearest vectors as our highest
ranked response in each cluster.

Our baseline results did not yield the results we intended. Of n = 200 iterations of 2-means clus-
tering, the closest vectors to the centroids were always ’I love you’ and ’I love you too’ with 2.5%
of the iterations returning ’I dont know’. One possible explanation for these unexpected results is
that ’I love you’ and ’I love you too’ have the most average Glove vectors in D = 300 dimensional
space.

3.4 Semantic Intent Clustering

We closely follow the implementation of grouping and ranking candidate responses using the se-
mantic intent clustering and EXPANDER algorithm described by Kannan et al. [5] Semantic intent
clustering allows responses to be grouped by their intent (ie) responses in the appreciative group
include ’thank you’ and ’thanks so much’, whereas responses in the affectionate group include ’i
love you’ and ’i love you too’. In this semi-supervised algorithm, a few manually seeded groups are
created for different categories (ie) the appreciative and affectionate group of messages mentioned
previously.

A base graph is then constructed, with the manually seeded messages comprising of nodes VR.
For each message, a set of lexical features (ngrams and skip-grams of n up to 3), are created and
comprise of feature nodes VF . Edges are created between a pair of nodes (u, v) where u ∈ VR and
v ∈ VF if v belongs to the feature set for response u.

The constructed graph captures relationships between similar responses via the feature nodes. The
semantic intent information is then propagated from the manually labeled examples through the
graph using the EXPANDER framework. [6] For each message, the top scoring output label is the
semantic intent it gets clustered into. The message with the highest score in each cluster is returned
to the user.

1We perform a similar algorithm in Step 1, where we take the centroid from 1-means clustering and find the
N nearest neighbours to get our input set.

4

Figure 3: Semantic clustering using the EXPANDER algorithm [5]

3.5 Flesch-Kincaid Filter

The Flesch-Kincaid score indicates how difficult a passage in English is to understand by examining
a response’s sentence, word and syllable ratio. It is used extensively in the field of education. A
score above 60 is deemed to be plain english and easily understood by 13 to 15 year old students.
Anything below this score is considered to be difficult to understand. [4] Thus, we filter out messages
that has a score below 60 in Step 6 of our high level algorithm description .

In order to determine the number of syllables in each word, we use cmudict, a pronouncing dictio-
nary for North American english words. Each phoneme that contains a stress marking has a value
of 0, 1 or 2. We count the stress markers, which effectively gives the number of syllables.

Figure 4: The Flesch-Kincaid score [5]

4 Evaluation

In this section, we present two evaluation metrics for quality assessment of our response suggester
model. Following the trend of recent seq2seq model papers, we adopt Perplexity as our first eval-
uation metric. Then we propose two ratios: Unique Response Percentage (URP), and Meaningful
Response Percentage (MRP) as a unique metric for evaluating NLP response systems. The details
of these two evaluation metric are presented in the following subsections.

4.1 Perplexity

As suggested in [5], perplexity is used to measure how well the model has fit the data. Generally,
the perplexity is calculated as an inverse of the normalized likelihood for which the model fits a
response. As a result, a lower perplexity means the model assigns higher likelihood to the test
responses and is better at predicting responses. For example, for the ideal scenario of perplexity
equal to 1, we would expect the model to predict exactly what should be the next word. To calculate
the perplexity of a model trained on a set of N test samples, we compute the following formula:

PP = exp(− 1

N

N∑
i=1

l̄n(P̂ (ri1, ..., r
i
m‖ci1, ..., cin))

where N is the number of training samples, and r is the i-th response and c is the i-th input context
message. P̂ is the likelihood estimation of the i-th response given the i-th input context message.
Finally, let l̄n denote the log likelihood of one training example normalized by the number of time
steps of the sentence. We thus represent the perplexity of a model by the average perplexity over
all training examples. The perplexity comparison of our final response suggester model and the
baseline is presented in Table 2.

5

4.2 URP & MRP

It is common for seq2seq models using deep learning to generate similar responses such as ”I don’t
know”, ”I love you”, or ”Thank you” when encountering unfamiliar input sentences. We expect a
competent seq2seq model to generate as many unique responses as possible based on different input
sentences. In addition, the model is not guaranteed to generate meaningful or grammatically correct
sentences. A good language model should generate a high percentage of grammatically correct and
meaningful responses. Thus, to further understand the performance of different response suggestion
models, we introduce two additional metrics: Unique Response Percentage (URP), and Meaningful
Response Percentage (MRP) to evaluate the model on these two aspects.

To evaluate the model’s ability to generating unique responses, we feed the model with 100 input
sentences and calculate the percentage of unique responses it generates. We refer to this as the
Unique Response Percentage (URP). Similarly, we calculate the percentage of grammatically correct
and meaningful responses generated by the model. We refer to this as the Meaningful Response
Percentage (MRP). Using these two scores, we can learn the diversity and robustness of a given
seq2seq model. The comparison of URP and MRP between the baseline and our final response
suggester model is also presented in Table 1.

Model Perplexity URP MRP
Baseline 29.6659 22% 14%
Attention seq2seq 22.5615 74% 38%

Table 1: Performance comparison

5 Results

From Table 1 in the previous section, we can see that our final attention optimized seq2seq outper-
forms the baseline implementation by all evaluation metrics. By adopting the attention optimized
seq2seq model, we were able to decrease the perplexity of our model to 22.5615. Furthermore,
since we explicitly forbid the UNK token by selecting the second most probable word as output
and also increase the vocabulary size to 8000, we successfully increase the URP from 22% to 74%.
Combining the benefit of the attention mechanism and forbidding the UNK token, our final response
suggester model also has a better MRP where more meaningful and grammatically correct responses
are generated.

Some good examples curated from the baseline model responses are presented in Table 2 and some
bad examples are shown in Table 3. Even with the baseline model, it is generating some proper
responses. However, the model generates a lot of UNK tokens most of the time due to the small
vocabulary size we use. Also, without the attention mechanism, the model is prone to responses
with some UNK tokens if there are also UNK tokens in the input context. This is due to the baseline
model’s lack of ability to down-weight the UNK tokens in the input context and focus on the more
meaningful part of the sentence.

Input context Response
how you been though bro i see youre doing
some clothes stuff

i miss you so much i love you so much

ive gotten a few pics from the wedding this is so cute
so many all stars in one story nice i love it
happy birthday have a very lit birthday thank you
favorite christmas song this is the best
i hate that word but hell yeah lol lol i was just thinking about it
memes are no joke in this group chat yes i know right
thank you youre welcome
i think its over bud i know i was just thinking about it
heres the customer care link for you eh thanks for the shout out

Table 2: Example of good responses from baseline model

6

Input context Response
describe yourself in three fictional characters unk unk unk
what trump wants to do hillary has already
done

unk unk unk unk unk unk unk unk unk unk
unk unk unk unk unk unk unk

lol beat that ass lol he was unk
you can watch the whole thing on youtube i think the unk is unk
new poll gives clinton debate win now up to
5 real polls all telling the same story

hillary is a unk unk

hey and im not gonna keep editing this shit
for free

im going to be a unk

Table 3: Example of bad responses from baseline model

In Table 4 we present examples of good responses curated from the attention seq2seq model as
well as some bad responses in Table 5. As discussed previously, the model is generating much less
UNK tokens, as we explicitly forbid it by selecting the second most probable word as output and
also increase the vocabulary size to 8000. As a result, the bad response generated by the attention
optimized seq2seq model is mostly repeated phrases or grammatically incorrect sentences.

Moreover, proper responses of the attention seq2seq model have a more explicit relationship to
the input sentences. For example, when given the input context of what did everybody think of
last nights episode, it responds with i was watching it. Here, ”episode” and ”watching” have a
much more explicit relationship compared to a more generic response such as i love it, which is
an appropriate response to many different input contexts. This demonstrates our final response
suggester’s capability of paying attention to particular words in the input context and generating
responses having an explicit relationship.

Input context Response
have you ever seen donald trump laugh via i think he was a racist
so many all stars in one story nice i love it
from a fan looking for someone to build
a good top quality business website thanks
please comment below

we can help you in design and development
of your website at reasonable price visit our
portfolio

happy birthday craig thank you
what did everybody think of last nights
episode

i was watching it

i wouldnt participate in another debate rudy
giuliani says

i am not sure

wishing you wanted me as bad as i want you i love you too
i played everything on that game i was watching the game
bet that you know we gonna turn up i dont know what i was doing

Table 4: Example of good responses from attention seq2seq model

Input context Response
lol damn thats harsh i dont know what you want to do
definitely not opposed to this i think i was thinking to the
youre hired i was a to
these three made it happen i think i was thinking
definitely excellent gif choice btw how could
i say no

i think i think i think i think i think i think i
think i think

join us ill figure out a spot later tonight or
tomorrow

i is

Table 5: Example of bad responses from attention seq2seq model

7

6 Conclusion

In our final implementation, much of our work was constrained by the available memory and training
speed of our computing instance. When training on the attention optimized seq2seq model, the
GPU runs out of memory when using a vocabulary set of over 8000 words due to the increase of
parameters used for the attention mechanism. When using a small vocabulary size, a large portion of
the training input context and responses contains the unknown token. This can restrain the model’s
ability to learn important information from the training examples, since the context becomes hard to
understand, even for humans. As a consequence, we expect a better model to be trained by using a
larger vocabulary set.

As discussed in previous sections, the resulting model generates promising responses with twitter-
like input sentences while lacking the ability to follow conversational inputs such as ”How are you?”
or ”Hi my name is John, what’s your name?”. The model has become overfitted to twitter-like inputs.
In order to build a better model, one possible approach is to train the model on more diverse training
examples. It would be interesting to concatenate the Cornell Movie-Dialogs corpus in addition to
the Twitter corpus to train a better model, provided one has sufficient time.

Other future directions include exploring the technique used in other language models such as dialog
modeling. Since the nature of dialog modeling and email/text replying is essentially the same,
many interesting concepts discovered in dialog modeling literature also apply to response suggestion
models. In particular, the personalized information capture mechanism described in [18] can be
utilized to learn the information of a particular user. This way, the model can become more consistent
in generating suggested responses that incorporate the user’s personal information. For example,
when given an input context such as ”Where do you live”, the model should consistently give a
response suggestion of the user’s address.

References
[1] http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-

Executive-Summary.pdf
[2] http://www.mckinsey.com/industries/high-tech/our-insights/the-social-economy
[3] Wuchty, Stefan and Brian Uzzi. ”Human Communication Dynamics: A Study of the Agree-

ment between Self-reported and Email Derived Social Networks,”PLoS ONE 6(11): e26972.
doi:10.1371/journal.pone.0026972, 2011.

[4] Kincaid, J.P., Fishburne, R.P., Rogers, R.L., & Chissom, B.S. (1975). Derivation of new read-
ability formulas (automated readability index, fog count, and flesch reading ease formula) for
Navy enlisted personnel. Research Branch Report 875. Chief of Naval Technical Training:
Naval Air Station Memphis.

[5] Smart Reply: Automated Response Suggestion for Email, Anjuli Kannan , Karol Ku-
rach, Sujith Ravi, Tobias Kaufman, Balint Miklos, Greg Corrado, Andrew Tomkins,Laszlo
Lukacs, Marina Ganea, Peter Young and Vivek Ramavajjala, 2016, Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). URL =
https://arxiv.org/pdf/1606.04870v1.pdf

[6] Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation,
https://arxiv.org/pdf/1512.01752v2.pdf

[7] http://www.androidpolice.com/2017/03/06/google-translate-now-uses-neural-machine-
translation-languages/

[8] Learning Phrase Representations using RNN EncoderDecoder for Statistical Machine Transla-
tion https://arxiv.org/pdf/1406.1078.pdf

[9] Sequence to Sequence Learning with Neural Networks https://arxiv.org/pdf/1409.3215.pdf
[10] Learning Phrase Representations using RNN EncoderDecoder for Statistical Machine Trans-

lation https://arxiv.org/pdf/1406.1078.pdf
[11] A Neural Conversational Model, Oriol Vinyals and Quoc V. Le, CoRR, abs/1506.05869, 2015,

URL =http://arxiv.org/abs/1506.05869
[12] https://github.com/Marsan-Ma/twitter scraper

8

[13] Understanding Dropout, http://papers.nips.cc/paper/4878-understanding-dropout.pdf
[14] http://suriyadeepan.github.io/2016-12-31-practical-seq2seq/
[15] Unsupervised Lexicon-Based Resolution of Unknown Words for Full Morphological Analysis,

http://www.aclweb.org/anthology/P08-1083
[16] Bentley, J. L. (1975). ”Multidimensional binary search trees used for associative searching”.

Communications of the ACM. 18 (9): 509. doi:10.1145/361002.361007.
[17] https://deeplearning4j.org/lstm
[18] A Persona-Based Neural Conversation Model, Jiwei Li, Michel Galley , Chris Brockett, Jian-

feng Gao and Bill Dolan, 2016, abs/1603.06155, CoRR, URL = http://arxiv.org/abs/1603.06155

9

	Introduction
	Related Work
	Approach
	Baseline Seq2Seq Model
	Additional Seq2Seq Optimizations
	Glove Inputs
	Larger Vocabulary Size
	Multilayer LSTM
	Attention Mechanism

	Baseline Response Clustering and Ranking
	Semantic Intent Clustering
	Flesch-Kincaid Filter

	Evaluation
	Perplexity
	URP & MRP

	Results
	Conclusion

