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Abstract 

Working by myself in the short time span of the assignment 4, three 
relatively simple models for question answering are implemented and their 
performances are compared. The models explored are: 1) Baseline model in 
the PA4Presentation.pdf [1], 2) The encoder from Xiong et al. [2] plus a 
simple decoder, and 3) The baseline model suggested on the Piazza forum 
[3]. These models are referred to as model 1, 2, 3 respectively in this paper. 
Some hyper-parameters such as dropout rate and learning rate are also 
explored to optimize the training. Model 3 with dropout rate of 0.15 
achieves the best performance compared to the other two models, with 
F1/EM scores of 22.6%/14.5% on the test set of the Stanford question 
answering dataset. 

 

 

1 Introduction  

For this question answering task, the Stanford Question Answering dataset (SQuAD) was 
used to train the model. SQuAD contains approximately 80,000 context/question/answer 
pairs for training, and the answers are in terms of a span in the context, which is described 
by two integers: a_s for the start index of the answer in the context, and a_e for the end 
index of the answer.  

I worked on the assignment 4 by myself, partly because I’m an SCPD student and it’s hard to 
go on campus, and also because the previous three assignments had a reasonable amount of 
work for one person, and I hoped to learn all aspects of the assignment by doing it myself. I 
approached the task by first studying the starter code and implementing the model 1 which is 
the very basic model. However I soon realized that the task was non-trivial. Although the 
starter code had many helper functions, a significant amount of basic infrastructure  code for 
training, model and answering had to be implemented first in order for the entire flow to 
work. Being new to TensorFlow, it took a long time just to study the starter code and 
understand what each part was doing. The Piazza forum was very helpful and I had many of 
my questions answered, but the number of questions/bugs I had was just too many and I 
made very slow progress. While I’ve put my maximum effort in this assignment and I sure 
learned a great deal of things, by the time when I had the basic infrastructure code and the 
model 1 completed and finished CodaLab submission issue debug, I only had three days left 
till the deadline. So please read the rest of the paper with this in mind.  

 

 

2 Related Work 

The model 1 presented by [1] is a simple baseline model that encodes the context and 
question using BiLSTM and one option is to take only the end states from the BiLSTM and 



assume that has all the information from the context and question. The end states are then 
fed into separate linear functions for decoding the a_s and a_e. 

In the model from Xiong et al. [2], it uses mainly LSTM to encode the context and question, 
and then calculates the coattention context by getting the interactions between the two. For 
decoder it uses a dynamic pointing decoder which alternates the estimation of the start and 
end positions in order to get out of local maxima.  

The model from [3] is a somewhat simplified version of [2]. It uses LSTM to encode the 
question and context, and then calculates the interaction between the two which is 
represented by the affinity matrix. It then predicts a_s and a_e by multiplying with a single 
weight vector.  

 

 

3 Approach and Experiments  

Models 1, 2, and 3 were implemented in that order. The following describes the 
implementation details as well as the testing, debug and optimization experiments that I ran 
during the implementation. 

 

3 .1  M o de l  1  

Model 1 is a very basic model implemented based on [1]. The implementation steps are 
described below: 

1) Context -> BiLSTM -> concatenate the two end hidden states to make h_c 
 

2) Question -> BiLSTM -> concatenate the two end hidden states to make h_q 
 

3) a_s = W_s * h_c + W_s * h_q + b_s 
 

4) a_e = W_e * h_c + W_e * h_q + b_e 
 

5) Use softmax cross entropy loss for training 

 

The model was trained for about 100 batches (batch size = 100), and as expected for a basic 
model, it got stuck at the validation F1 score of about 7% and did not learn any fur ther. So 
the training was terminated. The purpose of this was to build a basic model to make sure all 
the training code worked, so that goal was achieved. 

 

 

3 .2  M o de l2  

The model 2 was based on Xiong et al. [2]. This model was chosen because of its recent high 
score on SQuAD, as well as the interesting coattention encoder. The encoder was 
implemented as follows: 

1) Context -> LSTM -> take the output from all the words as D 
 

2) Question -> same LSTM as 1) -> take the output from all the words as Q’ 
 

3) Q = tanh(W_q * Q’ + b_q) 
 

4) L = D_transpose * Q 
 

5) A_q = softmax(L) 
 

6) A_d = softmax(L_transpose) 



 
7) C_q = D * A_q 

 
8) C_d = [Q; C_q] * A_d 

 
9) C_d -> BiLSTM -> take the output, which is the final encoded representation 

 

Next I attempted to implement the decoder described in [2], however at this point the 
remaining time for the assignment was running short and it was not likely I could implement 
the same encoder in [2]. So I decided to implement a simple feed forward de-coder instead, 
described below: 

10) h = relu(encoded * W + b1) 
 

11) h_drop = dropout(h, dropout rate) 

 
12) a_s = h_drop * U + b2 

 
13) repeat steps 10 to12 with different weights to get a_e 

 

This model was trained for 5 epochs, however the average validation F1 score remained 
about 15% and did not grow anymore. So the training was terminated.  

 

3 .2 .1  Ov er f i t t ing  t e s t  w i th  mo de l  2  

In order to understand why the model 2 had limited training improvement, the overfitting 
test was done. In this test, a batch if 100 training samples is taken, and the model was trained 
with the same batch repeatedly. After each iteration, the F1/EM scores were taken with the 
same training batch. This is to test the basic capability of a model to overfit a small sample 
of training data.  

When this test was run on model 2, it gradually learned and there was a steady increase of 
F1/EM scores over each iteration. However the learning eventually flattened and after about 
60 iterations the F1/EM scores reached the peak of 70%/57% and did not reach any higher. 
This result has revealed a fundamental flaw in model 2, that it cannot overfit a small training 
sample very well. 

 

3 .3  M o de l  3  

Since model 2 did not work well and I was running out of time for assignment 4, I decided to 
try another baseline model released on Piazza [3] and this is the model 3. The 
implementation is: 

1) Context -> LSTM -> take the output at all words as C 
 

2) Question -> LSTM -> take the output at all words as Q 
 

3) A = softmax(C * Q_transpose) 
 

4) C_p = A * Q 

 
5) C = concat(C_p, C) * W + b 

 
6) C_drop = dropout(C, dropout rate), this is the final encoded notation 

 
7) a_s = C_drop * W1 

 
8) a_e = C_drop * W2 



 

3 .3 .1  Ov er f i t t ing  t e s t  w i th  m o de l  3  

Before training the model, the same overfitting test was done on the model to make sure it is 
capable of overfitting a small training sample. The model learned rapidly and at iteration 18 
it achieved the training F1/EM score of 99%/100%. 

 

3 .3 .2  Lea rning  ra te  o pt i miz a t io n  

In  o rd e r  to  co mp are  the  e ffec t s  o f  d i ffe r en t  l e a rn in g  r a t e s ,  t he  l ea rn i ng  r a t e  
wa s  va r i ed  and  t he  mo d e l  was  t r a i ned  fo r  se v e ra l  t ens  o f  b a tc hes  to  o b se rve  
the  cha n ge  in  lo ss  i n  each  b a tch .  F i gure  1  s ho ws  t he  cha nge  i n  lo ss  fo r  
l ea rn in g  r a t e  o f  0 .0 0 1 ,  0 .0 5 ,  0 .0 1  and  0 .0 3 .  F ro m th i s  r e su l t ,  t he  l ea rn in g  
r a t e  o f  0 .0 0 5  was  p icke d .  Due  to  the  t i me  co ns t r a in t  o f  t he  a s s ig n me n t ,  I  d id  
no t  ge t  a  cha nce  to  lo ok  in to  exp o ne nt i a l l y  d eca yin g  l ea rn i n g  r a t e ,  ho we ver  
a t  l ea s t  I  t r i ed  to  p i ck  the  b es t  co ns ta n t  l ea rn in g  r a t e  th ro u g h  th i s  
co mp ar i so n .  

 

 

Figure 1: Sample Figure Caption 

 

 

3 .3 .3  Tra in ing  mo de l  3  w i th  d i f f erent  dro po ut  ra te s  

Another major hyperparameter to consider was the dropout rate. To compare the 
performance of the model with different dropout rate, two versions of the model 3 were 
implemented: model 3a) using the dropout rate of 0.15, and model 3b) using the dropout rate 
of 0.5. The two models were trained for a full 10 epochs, and Table 2 shows the result.  
Model 3a performed slightly better, meaning the dropout rate of 0.15 was better for this 



particular model.  

 

 

Table 2: SQuAD test score for models 3a and 3b 

 

There are other hyperparameters and functions that are important for improving the model ’s 
performance, including max gradient norm clipping, varying hidden state size, embedding 
size and optimizer type. Unfortunately due to the time constraint of this assignment I was 
not able to explore or implement these, but for future works these are interesting areas to 
look into. In this model the embedding size of 300 was used because generally higher 
embedding size seems to get better results.  

 

3 .3 .4  Co mpa r ing  the  t ra in in g  v s  v a l ida t io n  sco re  

During the training, training and validation scores were obtained regularly. Table 3 shows 
the comparison for the training and validation f1 scores for one random batch near the end of 
epoch 10. For both model 3a and 3b, there is massive difference in training vs validation 
score. The models were able to fit the training samples very well as result of training, but 
they performed poorly on samples they saw for the first time. This indicates that overfitting 
was still happening in spite of the increased dropout rate in model  3b. 

 

 

Table 3: Comparing training score and validation score 

 

 

3 .3 .4  Ana ly z ing  the  co rrec t  a nd  inco rrec t  pre d ic t i o ns  

Fo r  mo d e l  3 a ,  a  sa mp l e  o f  va l id a t io n  sa mp le s  were  t a ken ,  a nd  the  q ues t io n  
t yp e ,  mo d e ’s  p r ed ic t io n  and  the  t r ue  an s wer  were  ana l yzed .  Tab le  4  
su mmar izes  t he  t yp e  o f  q ues t io n  a nd  the  to t a l  F1  sco re  fo r  each  q ues t io n  
t yp e .  Over whe l min gl y the  “wha t”  a nd  “wh en”  q ues t io n  t yp e s  had  th e  mo s t  
co r r ec t  p r ed ic t io ns .  T hi s  i s  l i ke l y  d ue  to  the  f ac t  t ha t  t he se  q ues t io n s  t yp es  

Model Test set F1 Test set EM

3a: dropout = 0.15 22.6 14.5

3b: dropout = 0.5 21.2 13.1



r eq u i r e  a  sp ec i f i c  o b j ec t  o r  t ime  a s  an  an s wer  and  i t ’s  ea s y fo r  the  mo d e l  to  
lo o k  fo r  these  co n ten t s  in  the  co n tex t  p a r ag rap h .  On the  o the r  hand ,  t he  
“wh y”  and  “ho w”  q ue s t io n  t yp es  r ece i ved  the  l ea s t  sco re .  T hi s  i s  l i ke l y  
b ecause  these  q ue s t io n  t yp es  ha ve  mo re  va gue  o p en  ans wer s ,  an d  the y 
l a rge l y d ep end  o n  the  co n tex t  se n te nce  s t ruc t ur e  a s  we l l ,  so  i t  i s  ha rd e r  fo r  
the  mo d e l  to  co r r ec t l y  p r ed ic t  fo r  these  q ues t i o n  t yp es .   

 

 

Table 4: F1 score per question type 

 

Sample question/prediction/true answer pairs: 

When: 

Q: When was the Catered Affair released? 

Pred: 1956 

True: 1956 

 

Who: 

Q: Who designed the pyramid of Djoser? 

Pred: Imhotep 

True: Imhotep 

 

What: 

Q: What was Greece’s jobless rate in 2015? 

Pred: 24 per cent 

True: 24 per cent 

 

 

4 Conclusion  and future works  

As shown in Table 5, model 3 with dropout rate of 0.15 achieved the highest score among 
the three models I was able to try. Despite my very best effort, the resulting test score was 
somewhat low. However during the course of the assignment I really gained a solid hands-on 
experience of TensorFlow and also learned that it is not easy to implement a good 
performing model from the beginning.  

 

 

 

Question type F1 score total

What 12

When 6

Who 2

Where 1

Why 1

How 0



 

Table 5: Performance comparison of the three models 

 

For future works I would like to explore these aspects more:  

 Look into why model 2 was not able to overfit a small training sample 

 Try solving the overfitting problem for model 3 

 Explore with more hyperparameters and implement max gradient norm and learning 
rate annealing 

 Consider what type of models can better predict qualitative questions such as “why” 
and “how” 
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