

PA4 – Question Answering on Squad

Mudit Jain 1
muditjai@gmail.com 2

muditjai@stanford.edu 3
SCPD student 4

Abstract 5

I created 3 NN models to implement a question answering system and 6
measured the performance on Squad. The 1st model uses a simple 7
bidirectional GRUs to encode the question and decode on context state, the 8
2nd model implements attention as suggested in the handout and the 3rd 9
model implements ideas inspired by Multi Perspective Context matching 10
paper, the assignment handout and few original ideas. 11

 12

1 Brief Description of Problem 13

 14

1 .0 Ov erv iew o f the ta sk 15
We are trying to create a machine text comprehension system. One of the ways to do so is to 16

implement a question answering system which given a context and question, can answer the 17

question using information from the context. We used the recently published Squad 18

dataset[1] to train and evaluate this model. 19

 20

1 .1 Pro ble m fo r ma l iza t io n 21
Given a question Q and a context paragraph P, produce answer span indices (a s, ae) where as 22

< ae, is from within P which correspond to the answer. 23

 24

1 .2 Da ta se t o v erv iew 25
The Squad dataset has 107,785 question answer pairs, of these 87K are for training and 10K 26

for dev validation and 10K for testing. Our scripts further divide the 87K set into about 82K 27

training and about 5K validation set. 28

I plotted the sentence length distribution of question and paragraphs for training and 29

validation sets to decide the padding lengths. These are shown below.30

31

mailto:muditjai@stanford.edu

 32
2 Description of Models Implemented 33

 34

2.0 Setup ef forts before implementing models 35

For code setup, my initial focus was on creating a very basic working model using PA4 36
starter code and then try to build and improve on top of it. Modifying the starter code proved 37
to be a huge challenge and it took almost 1 week of reading the PA3, PA4 code and 38
tensorflow documentation to get started. 39

For the dataset setup, I created a very small local sample of 100 points(called TrainSample) 40
in order see which methods lead to quick decrease in loss per epoch and take less runtime. 41
The questions and contexts were padded to lengths 30 and 600 from analysis of the pdf of 42
data even though the maximum length for question and contexts were 60 and 766 tokens 43
respectively. Later these maximum padding lengths were reduced to 20 and 300 to speed 44
up the runtime. 45

The embeddings used were Glove 6B embedding initially, but updated to Glove 840B for my 46
3rd model. The 3 models are described in the next section. 47

For runtime setup, I completed the Azure VM setup with few minor issues. I also learnt 48
functionality of few commands like screen, nohup and tee to help during training on VM. 49

For theoretical foundations, I read the Match LSTM[2], Multi Perspective Matching[3] and 50
Pointer Net[4] papers to understand common approaches taken. I tried to read the 51
ReasoNet[5] paper, but it was based on reinforcement learning and too difficult to 52
understand. 53

 54

2.1 Model 1 - Simple Bidirect ional encoder -decoder GRU 55

Since this is a text comprehension problem, using RNNs made most sense for 56
encoding/decoding. As a first cut, I implemented an architecture similar to the encoder-57
decoder network used for machine translation tasks 58

The steps are for this model are 59

1. First the question and context are convert to dense Glove embedding representation. 60

2. A RNN encodes the question to generate a final hidden state vector hq. 61

3. This hq is then fed as an initial state for the decoder RNN that decodes over the context 62
and produces 2 output vectors which are considered to be unnormalized probability 63
distributions for start and end indexes. 64

4. Loss is computed as cross entropy softmax for each of the 2 distributions. 65

q1 q2 q3 c1 c2 c3 c4 c5

Question
Encoder

Context
Decoder

P1
s, P

1
e P2

s, P
2

e P3
s, P

3
e P4

s, P
4

e P5
s, P

5
e

Start and End
probabilities for each

context token
Units can be single/multi

layer and uni/bi directional
RNN/LSTM/GRU

hq

 66

 67

As mentioned before, for 300 output states and with random initialization of weights and 68
therefore predictions, we expect the loss to be 5.7 + 5.7 = 11.4 initially . This was used to as 69
a sanity check to make sure the network is initializing correctly. 70

I started with RNN as cell units to make sure the networks works without errors. Then I tried 71
LSTM and GRU and observed that GRUs are faster and converge quicker than LSTM on the 72
TrainSample(set of 100 training points). This influenced my decision to primarily use GRUs 73
in subsequent networks too. I then tried bidirectional GRUs and found them to be even 74
better. 75

Problems and learnings 76

After verification of correctness on local machine, I trained this network on Azure VM after 77
increasing state size to 512. However, there were several problems 78

1. The runtime was slow - I fixed the runtime issue by reducing the context(output) size to 79
300 and question size to 20 from initial values 600 and 30. This was done based on analysis 80
of PDF of sentence lengths, since most context sentences were shorter than 300 words and 81
most questions were shorter than 20 words. 82

2. The network was returning NaN losses after training on about 20K samples – I fixed this 83
by clipping the label indices to 300-1=299 since sparse softmax function will return NaN 84
if label index is beyond the probability vector length. 85

Another issue which was more subtle and took me almost 1 day to understand was effect of 86
learning rate. The network would run fine locally, but give NaNs on full data. I assumed its 87
due to a data issue, but after lot of debugging the problem was that I had to decrease the 88
learning rate from 0.01 to 0.001. I later tried different learning rate annealing methods for 89
other models. 90

Performance 91

The performance of this model was pretty bad due to its simiplicity. Here are the numbers 92

 93

 Sanity Check Set Dev Set Test Set

 F1 EM F1 EM F1 EM

Simple
Encoder
Network

3.34 0.37 5.20 0.64 4.89 0.63

 94

2.2 Model 2 - Attent ion based model 95

GRU GRU

q1 q2

GRU

GRUAttn

q3

c1

GRUAttn GRUAttn

c2 c3

GRUAttn GRUAttn

c4 c5

Question Encoder

Paragraph encoder with
attention on all question

hidden states

P1
s, P

1
e P2

s, P
2

e P3
s, P

3
e P4

s, P
4

e P5
s, P

5
e

Start and End
probabilities for each

context token

hq
final

Question Output States Hq

RNN RNN RNN RNN RNN

Paragraph decoder with
attention on final

question state

 96

This model was based on the assignment handout. Here’re the steps for this model. 97

1. The question tokens are converted to dense Glove embedding representation and encoded 98
using a bidirectional GRU for all question tokens. Let the concatenated output/hidden states 99

of question be Hq and concatenated final state be hq
final

 100

 101

2. Then the paragraph is converted to dense representation and for each word of paragraph, it is 102

passed through a bidirectional GRU cell to obtain hp 103

 104

3. Then similarity values(ie attention coefficients) are calculated between hp and Hq by 105

calculating their dot products. The attention coefficients are passed through a softmax to conver 106

them into probabilities. Then a weighted average of Hq with these attention coefficients is 107

calculated to get a new vector cp ie a new question context vector for the paragraph hidden state 108

hp . Then I calculate their linear combination ie W1hp + W2cp + b and return that as GRU output. 109

This gives us a mixed question-paragraph representation hqp with hopefully a focus on important 110

states of the paragraph wrt question. This part of code was very similar to GRUCellWithAttn as 111

provided in the PA4 helper pdf. 112

4. Then decoder takes in hqp and the concatenated question presentation hq
final

and calculates a 113

dot product to get pointer-net like similarity between question representation hq
final

 and every 114

hqp. The paragraph states are multiplied with these similarity values and a 2 output state 115

bidirectional RNN is run over them. The 2 states of both forward and backward RNN outputs are 116
added in a linear way to get the final start and end probability distributions. 117

5. These start and end probability distributions are then passed through a softmax cross entropy 118
operation to get the loss. 119

Problems and learnings 120

1. This model had a steep learning curve and took a lot of debugging time to implement correctly 121
– I learnt about how to do various tensor manipulations in 2 and 3 dimensions. 122

2. The network used to diverge on losses and sometimes give NaNs – I learnt about the 123
importance of keeping the learning rate low and reducing it over time and observing the gradient 124
norms and clipping them to avoid gradient explosion. I also tried piecewise constant learning 125
rate decay. 126

3. Each epoch took 2.5 hours to run with multiple restarts needed due to various issues. 127

4. The loss on training set decreased promisingly, but the final result on dev set and test set was 128
disappointing as it most likely did overfitting on training data. 129

However, it was a strong learning experience for me and made me much more confident about 130
future implementations. 131

Performance 132

This model showed increase in validation loss while training loss decreased. And the 133
performance of this model was even worse than model 1 on sanity check set and I didn’t 134
evaluate it further on dev set. Since the performance was so bad, I didn’t try dropout etc. 135

 136

 137

 Sanity Check Set

 F1 EM

Attention based model
epoch 4

2.33 0.12

Attention based model
epoch 8

2.27 0.12

 138

2.3 Custom attention and f i l ter ing based model 139

GRU GRU

q1 q2

GRU

GRU
Filter

q3

c1

GRU
Filter

GRU
Filter

c2 c3

GRU
Filter

GRU
Filter

c4 c5

Question Encoder

Paragraph encoder with
attention on all question

hidden states using
customized GRU

P1
s P2

s P3
s P4

s P5
s

Start probabilities for
each context token

hq
final

L2 normalized Question
Output States Hq

LSTM LSTM LSTM LSTM LSTM
Paragraph decoder for

start state

Glove 840B embeddings used for qi and ci

L2 normalized final
states hq

final

P1
e P2

e P3
e P4

e P5
e

End probabilities for
each context token

LSTM LSTM LSTM LSTM LSTM
Paragraph decoder for

end state

 140
This model was based on experience of training previous models and reading the Match 141

LSTM and Multi perspective matching papers. I implemented it on Sunday and so kept it 142

simple. But in part due to Azure credit expiry, the training is still ongoing. This model has 143

15.5 million parameters. 144

 145

The model was based on following observations 146

1. GRUs are very good at encoding the questions and paragraphs. 147
 148

2. Adding question state at different stages seems to help in learning. 149
 150

3. Inspired from filtering step of Multi perspective matching paper, this network find 151
the maximum and average similarity of paragraph with normalized question output 152

states and also with normalized question final state. 153

 154
4. Using a better embedding helps. So I switched to Glove 840B 300dim cased 155

embeddings in this model. 156

 157
5. The final decoder should carry more state information than 1 and so I switched 158

to LSTM from RNN/GRU since LSTM supports both a high dimensional cell state 159
and a projection to size 1 in output. This was a big weakness of model 2. 160
 161

The steps in this model are 162

1. The questions are encoded into dense representation using Glove 840B embeddings and 163
bidirectional GRUs. This step is same as before. 164

 165

2. The paragraph encoding uses ideas on filtering from Multi perspective matching paper. Instead 166

of model 2 approach of calculating a single context vector by applying attention on all question 167

output states Hq, we do multiple calculations. First we normalize the Hq and question final state 168

hq
final

. Next we calculate dot product (cosine) similarity(ie attention coefficients) α between 169

paragraph hidden state hp and Hq and also between hp and question final state hq
final

. 170

 α = cosine(hp Hq) 171

3. Next we multiply hp multiply with max(α) to account for a question word having strong 172

affinity for hp, we also multiply with mean(α) to account for multiple question words having high 173

affinity with hp. In addition, we calculate cosine similarity between hp and hq
final

. 174

 hp
max_sim = hp * max(α) 175

 hp
mean_sim = hp * mean(α) 176

hp
question_sim = hp * cosine(hp, hq

final) 177

 178

Next we calculate a linear combination of W[hp
max_sim hp

mean_sim hp
question_sim hq

final
] + b to 179

get our output representation hqp combining both question and paragraph. 180

I created a new GRU inherited cell called GRUWithFilter for this calculation. 181

 182

4. For decoding, the above hqp was concatenated with hq
final and fed as an input into a 183

bidirectional LSTM. The output of LSTM was sent through linear combination with hq
final

 to get 184

the start probabilities Ps for each paragraph state and cell state Cs. 185

hq
final is used repeatedly in different stages since it keeps the focus on question and was also 186

empirically improving performance on small TrainSample set. 187

The reason for using LSTM instead of RNN/GRU was that it allow higher state(cell) size with 188

unit output size(using output projection). Using state size of 1 was a key weakness of model 2. 189

 190

5 . The state Cs from previous LSTM was concatenated with hqp and passed through a 191

unidirectional LSTM to get the end probabilities Pe 192

 193

Problems and learnings 194
1. The first version again had NaN values – I discovered that it was due to a divide by 0 error in 195

normalization code of step 1. Debugging this made me more confident in using tf.Print() and 196

interpreting actual tensor values on individual examples. 197

 198

2. High gradient values - Learning rate was kept at 0.0001 initially, but by 3rd epoch I started 199

seeing higher gradient norms and had to reset the LR to 0.00005 and resume training. 200

 201

2. Insufficient time - This model was implemented on Sunday and started on Sunday night, but 202

Azure credits expired that night and the model could only be trained till 3rd epoch the next day. 203

Performance 204

 205

 Sanity Check Set Dev Set Test Set

 F1 EM F1 EM F1 EM

GRU
filter attn
epoch 1

18.90 11.23 17.65 8.24 17.36 7.89

GRU
filter attn
epoch 2

25.88 18.39 24.39 13.3 -- --

GRU
filter attn
epoch 3

28.04 20.61 28.87 17.38 -- --

 206

Analysis of types of error 207

High level comments – Although the model performance is below the expectation of 60/50 208
on F1/EM, it still does learn quite a few patterns. 209

Strengths – 210

1. It is able to understand the nature of response eg “Who” questions need a person as 211
response, “When” questions need a time, “How much” needs a quantity etc. Also the 212
answers are mostly coherent even when it makes a mistake. Eg 213

Context – In 1900, Tesla was granted patents …… radio transmission in 1901 …. 214

Question – When did Tesla attain his electrical transitter patent? 215

Model Answer – 1901 216

Actual Answer - 1900 217

 218

2. For simple questions it is able to answer correctly. Eg. 219

Context - In October 1529 , Philip I , Landgrave of Hesse , convoked an assembly of German 220
and Swiss theologians at the Marburg Colloquy ….. 221

Question - Who was Philip I ? 222

Model Answer – Landgrave of Hesse 223

Actual Answer - Landgrave of Hesse 224

 225

3. It is able to answer few difficult questions also Eg 226

Context - NASA immediately convened an accident review board , overseen by both houses 227
of Congress . While the determination of responsibility for the accident was complex , the 228
review board concluded that " deficiencies existed in Command Module design…. 229

Question - Who kept tabs on the accident review board that NASA created ? 230

Model Answer –both houses of Congress 231

Actual Answer - both houses of Congress 232

 233

 234

Weaknesses - 235

Some weaknesses are - 236

1. Picking an incorrect entity as the answer as seen in example before. 237

2. Predicting start index after end index, for questions with longer answers. This happens in 238
many instances and can perhaps be fixed by enforcing harder constraints through the loss 239
function. 240

3. Getting confused by more difficult questions. Eg 241

Context – The best , worst and average case complexity refer to three different ways of 242
measuring the time complexity (or any other complexity measure) of different inputs of the 243
same size . Since some inputs of size n may be faster to solve than others , we define t he 244
following complexities : 245

Question – Case complexity <unk> provide variable probabilities of what general measure ? 246

Model Answer – different inputs of the same size 247

Actual Answer – time complexity 248

 249

Ac kno w ledg me nts 250

I would like to thank the instructors and hard working TAs of CS224n for solving so many 251
doubts on piazza quickly. Piazza has been a great source of learning for this course. 252

References 253

[1] Squad dataset Rajpuarkar et al. 254

[2] Machine comprehension using match-lstm and answer pointer. Wang et al. 255

[3] Multi perspective matching for machine comprehension. Wang et al. 256

[4] Pointer Net – Vinayals et al. 257

[5] Reasonet – Learning to stop reading in machine comprehension. Shen et al. 258

