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Abstract

The in-progress Fake News Challenge is a public challenge tasking competitors
to develop a stance detection tool that could ultimately be incorporated into a
larger automatic fact-checking pipeline. 49,972 body-headline pairs are labeled
with either ”Unrelated”, ”Discusses”, ”Agrees”, or ”Disagrees”, and it is the goal
of the stance detection task to predict these labels. We applied the concepts of
neural attention and conditional encoding to long short-term memory networks
(LSTM) ultimately achieving a preliminary competition score of 0.808, improv-
ing over the competition baseline of 0.795 that relies on several hand-crafted lin-
guistic features. Four models were evaluated: Bag of Words (BOW), basic LSTM,
LSTM with attention, conditional encoding LSTM with attention (CEA LSTM).
The attention models outperformed the simpler models on all performance met-
rics on the test set. In particular, the models with neural attention were able to
achieve significantly higher F1 scores predicting the infrequent stances ”Agrees”
and ”Disagrees”.

1 Introduction

This work is an in-progress submission to the public Fake News Challenge [1] that will conclude
on June 1, 2017. The curators of the challenge succinctly describe the underlying problem of ”Fake
News” that the challenge addresses: “Fake news, defined by the New York Times as ‘a made-up
story with an intention to deceive’ [2], often for a secondary gain, is arguably one of the most
serious challenges facing the news industry today. In a December Pew Research poll, 64% of US
adults said that ‘made-up news’ has caused a ‘great deal of confusion’ about the facts of current
events” [3].

While it would seem natural to develop a system to directly classify new articles and headlines
as fake or legitimate, the labeling of such a dataset is controversial and subject to the bias of the
labelers. As a result, the focus of the challenge is to instead develop a stance detection tool that
is able to automatically reason about the relationship between a new claim or headline and a set
of articles. To be clear, stance detection refers to the task of classifying a pair of sources of text as
agreeing, disagreeing, neutral, or unrelated. Such a tool may be used as a building block for a broader
automated fact checking system that is able to rapidly assess the veracity of a new claim through the
assessment of the level of agreement of the claim with the articles of several news organizations that
have known levels of reliability and bias. If such an automated system is unrealizable, the stance
detection tool may also be used to more aid human fact checkers in quickly assessing the reliability
of a claim, as the tool would allow for efficient retrieval of articles that agree, disagree, or are neutral
to the claim, allowing for the fact-checker to use their own judgment as to the veracity of the claim.
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2 Competition Details

2.1 Description of Data

The administrators of the Fake News Challenge provide a training data set derived from the Emer-
gent [4] dataset. Each of the articles in the Emergent data set is decomposed into the headline and
the body text. The final dataset provided by the challenge administrators includes 1648 unique head-
lines and 1669 article bodies that have been paired to create 49,972 body-headline pairs, where the
headline and the body used for training need not come from the same article. Each article-body
pair has been labeled with a stance and stance labels include Unrelated, Disagrees, Agrees, and
Discusses. It should be noted that the distribution of labels is highly unbalanced within the training
set with 73.1% of examples (36529 examples) labeled as ”Unrelated”, 17.8% of examples (8896)
labeled as ”Discusses”, 7.4% (3698) labeled as ”Agrees”, and 1.7% (850) labeled as ”Disagrees”.

2.2 Scoring

To address this issue of class imbalance, the competition will be scored on the basis of a weighted
accuracy measure where 0.25 points are awarded correctly classifying a pair as ”Unrelated”, 0.25
points are awarded for an incorrect classification if the true label is one of ”Agrees”, ”Disagrees”, or
”Discusses” and one of those labels was predicted, and 1.0 point is given if a correct classification is
made the when the true label is ”Agrees”, ”Disagrees”, or ”Discusses”. The final competition score
is reported as a percentage of the highest achievable score for a particular data set.

2.3 Official Baseline model

On March 1, 2017, the competition administrators released an official baseline implementation that
uses a GradientBoosting classifier [5] with hand-crafted linguistic features including token
overlap, polarity, and refutation. This model achieves a competition score of 79.53% over 10-fold
cross-validation.

3 Relevant Literature

The work [4] that introduces the Emergent data set additionally presents an approach for stance de-
tection where simple features are extracted from the headline and the associated claim are used as
input to a regularized logistic regression classifier. This model attains performance that is compara-
ble to the state of the art in stance detection. A related work [6] considers the usage of a conditional
encoding scheme with two bidirectional Long Short Term Memory (LSTM) [7] models for stance
detection for tweets towards some target. The tweet and the target are processed by separate LSTM
models and the first hidden state of the LSTM that processes the target is initialized with the final
hidden state of the LSTM that processes the tweet.

A related task that is conceptually similar to stance detection is the task of recognizing textual
entailment. In this task, two sentences are processed and the goal is to determine if either the second
sentence is a logical consequence of the first sentence, the sentences are contradictory, or they are
not related. Recently, Rocktaschel et al. [8] demonstrated that the usage of conditional encoding of
LSTM models, in the manner described previously, in conjunction with neural attention mechanisms
[9] improves on the state of the art in recognizing textual entailment. Given that the task of stance
detection and recognizing textual entailment are conceptually similar, it is a reasonable hypothesis
that the usage of attention mechanisms in conjunction with conditional encoding will attain high
performance on the stance detection task.

4 Approach and Methods

4.1 Preprocessing

The text of each headline and article body in the dataset was processed with the word_tokenize
function available from the natural language toolkit (nltk) [10] and each unique token mapped to
an integer identifier such that each document is represented as a sequence of positive integers. The
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unique tokens in the text were mapped to 50 dimensional GloVe word embedding vectors [11] that
were previously trained on a Twitter Corpus containing 2 billion tweets and a vocabulary of 1.2
million unique tokens. Any token in the text of the headlines and article bodies did not map to
any token in the Twitter corpus was simply removed from the corresponding sequence. Since the
text sequences considered were of various lengths, we zero padded all sequences to the maximum
sequence length observed in the corpus. Proper masking techniques were used in each case so that
the states produced on the zero-padded input did not factor into the loss calculations. Given that the
majority of headline and article bodies are considerably shorter than the maximum length of either,
sequences were truncated prior to being used as input to a model see Figure 5. The number of tokens
to truncate at was considered to be a hyper-parameter.

4.2 Models

The four models that follow were considered for the stance detection task. The code for all models
and experiments was developed in Python 2.7.10 and Tensorflow 0.12.1 [12].

4.2.1 Bag of Words

For a simple baseline, a bag of embedded words model was constructed where the embedding vec-
tors of the headline and the body were averaged separately, concatenated, and used as the input to a
feed to a feed-forward neural network with a softmax output layer.

4.2.2 Long Short Term Memory Network (LSTM)

In addition to the bag of words model, we consider an additional baseline in the form of a standard
LSTM [7] model that processes a concatenation of tokens in the headline and the article body to
produce a classification of the stance. No special token is used to delineate the transition between
the header and the body in the concatenated input.

4.2.3 Attention

The attention mechanism presented in Rocktaschel et al. [8] was implemented in Tensorflow. A
summary of the attention implementation is provided below.

Let all vectors be column vectors. Define the attention window the be the first L output states
produced by the LSTM. Let k be the dimension of the hidden state, and N be the total sequence
length. Let Y ∈ Rk×L = [h1, . . . , hN ] be a matrix of the output states of the LSTM in the attention
window. Let eL ∈ RL be a vector of 1s. Let W y,Wh,W p,Wh ∈ Rk×k and w ∈ Rk be trainable
matrices. A final state h∗ is produced as follows:

M = tanh(W yY +WhhNe
T
L) (1)

α = softmax(wTM) (2)

r = Y αT (3)
h∗ = tanh(W pr +W xhN ) (4)

h∗ is then used as the new final state of the network that may be passed to any downstream task.

4.2.4 Attention Model 1 - Modified Simple LSTM

As a first attempt at utilizing attention for the stance detection task, the previously described baseline
LSTM model was augmented with the attention mechanism over the first L output states of the top
layer of the LSTM.

4.2.5 Attention Model 2 - Conditional Encoding LSTM

Finally, an LSTM framework with conditional encoding [6] was considered and the attention mech-
anism applied. We will refer to this model as CEA (Conditional Encoding with Attention). In this
setting, the headline and the body are processed separately in two LSTM models where the final
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hidden state of the model used to process the headline is used as the first hidden state of the model
used to process the bodies. The attention mechanism then operates over the the first L output states
of the headline LSTM in conjunction with the final hidden state LSTM that processes the article
bodies.

4.3 Evaluation

Prior to training, the dataset was split randomly into a training, development, and testing set. The
split was defined such that 60% of the examples were in the training set and 20% of the examples
were in each of the development and testing sets. All experiments were performed by minimizing
the mean cross-entropy loss on the training set and monitoring the performance on the development
set in terms of the class-level F1 and the competition scoring function, as previously described. The
performance on the development set was analyzed and the final parameter set selected for each class
of model. For final evaluation at the selected parameter sets, the training and development sets were
combined and the models trained once more with the selected parameters for subsequent evaluation
on the testing set. No further parameter tuning was performed to mitigate sources of bias in the
evaluation of the test performance.

4.4 Parameter Tuning Experiments

Given the high computational cost of a full grid search over all possible parameter settings, only a
relatively small subset of permutations was considered for a rough sensitivity analysis. To gauge
which parameters would likely have the largest effect on the model performance, initial tests were
run on a smaller subset of the data (results not shown) and it was determined that the number of
tokens in the truncation window and the number of hidden layers were the parameters with the
largest effect. Thus, those two parameters were the ones considered for further tuning.

For all models, we fixed the number of hidden layers at 100 units, the dropout probability of 0.2
(LSTM models only). Additionally, the Adam [13] optimizer was used for all models and the word
embedding vectors were considered to be trainable. The training process was run for 40 epochs and
the batch size was set at 128 examples.

For experimentation, we additionally define a default parameter set for each model and then vary
a single tuning parameter while all other parameters take on their default values. The development
set performance is assessed for each experiment, as previously discussed. The default and tunable
values for the parameters for each model are as follows:

• Bag of Words. Default truncation length 150 tokens of the article body, 2 layers. Learning
rate of 0.005. Tuning truncation length at 75, 150, 300, and 600 tokens and 1, 2, and 4
layers.

• Basic LSTM. Default truncation 150 tokens in the concatenated representation and 2 layers.
Learning rate of 0.005. Tuning truncation length at 75, 150, and 300 tokens and 1, 2, and 4
layers.

• LSTM with Attention. Default truncation 150 tokens in the concatenated representation
and 1 layer. Learning rate of 0.001. Attention window of the first 15 tokens. Tuning
truncation length at 75, 150, and 200 tokens and 1, 2, and 4 layers.

• LSTM with Conditional Encoding and Attention. Default truncation 150 tokens in the
article body and 1 layer. Learning rate of 0.001. Attention window of the first 15 tokens.
Tuning truncation length at 75, 150, and 300 tokens and 1, 2, and 4 layers.

5 Results

5.1 Length truncation and benefits of attention

Competition scores analysis

First, we observe in Figure 1 that models achieve a higher competition score for a truncation length
of 75 tokens, with the exception of CEA, which attains comparable performance at 300 tokens.
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Figure 1: Competition score with varying truncation levels

The reason for this may be that the models have difficulty learning from long sequences. The
performance of CEA on longer sequences demonstrates the potential benefits of the combination
of conditional encoding and attention. Our interpretation of those results is that using longer input
sequences adds noise to the input and only the CEA can extract meaningful information from this
noisy input to improve the score. However, we observe a significant performance improvement from
150 tokens to 300 tokens, which indicates that the conclusion of an article may be more meaningful
than the middle of it. The median article length is 315 tokens, so truncating at 300 tokens allows the
model to process roughly half articles fully. Truncation at 150 tokens adds noise with respect to the
truncation at 75 tokens without adding the benefits of processing articles’ conclusions.

Finally, we observe two interesting features about the BoW model. First, it performs better than the
simple LSTM. Second, its performance at truncation 600 is close to its best performance, it thus
seems to make sense of the additional information provided by long sequences in spite of the added
noise. This provides compelling evidence for attempting to use the CEA model for longer sequences
in future iterations.

There are several avenues by which these analyses may be enhanced. First, we observe that
some models, CEA in particular, would potentially benefit from training beyond 40 epochs as the
development score is still increasing steadily at epoch 40 despite some noise. Second, the relatively
poor performance of simple attention compared to CEA may be due to the fact that only a single
hidden layer was used in these experiments. Contrary to CEA, the simple attention model is only
composed of a single LSTM, so with a single layer the number of parameters trained is limited,
possibly causing bias in the model.

F1 scores analysis

The F1 scores showed in Figure 2 support the previous analyses. The performance gap between
CEA and the other models is striking as we inspect each class separately. The overall decrease in
performance with increasing truncation level is confirmed for the LSTM and the simple attention
model. The decrease in performance of CEA for truncation 150 is particularly visible on the ’Dis-
agrees’ class. Eventually, it seems that the decent performance of the BoW model is due to the good
performance on the majority ”Unrelated” class.

5.2 Hidden layers study

Making the number of hidden layers vary in {1, 2, 4} showed that 2 was a good compromise given
the limited amount of data we had.
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Figure 2: F1 scores with varying truncation levels

Competition scores analysis

Figure 3: Competition scores with varying number of hidden layers

We see in Figure 3 that when hidden layers are set to 4, the learning curves of the simple attention
model, CEA and LSTM are still quite steep when epoch 40 is reached. So those models may benefit
from further training. However, the CEA with 2 layers outperforms them by a significant 2% margin,
so this further training might not be relevant.

The learning curve of CEA with 2 hidden layers also looks like the model could be trained further.
In particular, the potential gain for the CEA is clear in appendix Figure 8.

F1 scores analysis

The F1 scores displayed in Figure 4 show most models do not benefit from 4 layers. However as we
discussed, that may be the consequence of a too low number of epochs. We observe a F1 boost for
the ’Disagrees’ class when CEA number of layers is set to 2, making the F1 of the minority class
close to 0.8. Notably that the BoW model with a single layer gives a very poor performance, perhaps
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because the number of parameters is too low with respect to all other models, yet the BoW model is
comparable when additional layers are added.

Figure 4: F1 scores with varying number of hidden layers

Sensitivity analysis conclusion

• The CEA model could benefit from extended training and truncation to longer sequences.
Setting 2 hidden layers seems the best choice but should be compared to longer trained
4-layer model. Performance improvement is striking on minority classes.

• The simple attention model suffers from relatively high bias compared to CEA as it cannot
benefit from the advantages of having a separate LSTM that processes the headlines and
body. Further training with 4 layers may diminish the gap with CEA.

• The basic LSTM model yields a relatively poor performance on this task, which is probably
due to the fact that processed sequences are too long.

• The BoW model yields a comparable competition score performance to other models when
additional layers and considered, although it still performs poorly on the rare class.

5.3 Test performance overview

Following the parameter tuning process, a final set of parameters was selected and used for predic-
tion on the final hold out set. The selected set of parameters can be found in the supplementary
material in table 2 and the final performance results in table 1. In summary, a truncation length of
75 tokens was used in all cases except for the bag of words model, in which case 600 tokens was
used. Additionally, a 2 layer network was selected in each case.

In general, the testing results reflect the results seen during the tuning process. In particular, each
model performs comparably on the ”Unrelated” class and the two models that incorporate attention
have much greater class level F1 for ”Agrees” and ”Disagrees”. It shows the attention and condi-
tional encoding mechanisms allow the model to better classify the rare labels. Let us note that the
simple LSTM performs higher on this test set (0.789) than in the tuning process, which may indicate
that the model improves with additional data. Finally, both the attention LSTM and the conditional
encoding with attention LSTM outperform the competition baseline score of 0.795 by achieving a
score of 0.804 and 0.808, respectively.
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Table 1: Final results of the four models with selected hyperparameters are shown based on their
evaluation on the held out test set (20% of data). The performance of the models increases with their
complexity, with the Conditional Encoding LSTM with Attention (CEA LSTM) performing best on
all metrics but the train loss.

Model Competition Score Train Loss Stance F1 Score
Agrees Disagrees Discuss Unrelated

BOW 0.752 0.156 0.635 0.478 0.819 0.968
Basic LSTM 0.789 0.019 0.805 0.581 0.910 0.973
Attention LSTM 0.804 0.019 0.845 0.746 0.925 0.974
CEA LSTM 0.808 0.026 0.866 0.793 0.936 0.978

6 Discussion

6.1 Limitations

We did not address the issue of bleed-over of the headlines and bodies between the training, devel-
opment, and testing sets. Given that there are many more headline-body pairs than there are unique
headlines and bodies in the dataset, there are likely many instances of bodies and headlines that ap-
pear in both the training set and the development and testing sets that were used for evaluation. As
a result, it is possible that the results presented here are optimistic, particularly since the unreleased
testing set that will be used for the final evaluation will contain an entirely new set of headlines and
bodies. We will analyze this issue in further work.

6.2 Future Work

Parameters exploration. As pointed out in the sensitivity analyses, we could retrain our models
with more epochs, 50 or 100 epochs. Longer sequence threshold could be set for the CEA model
to understand the full benefits of attention. Different attention windows could be tested. Eventually,
we could choose an embedding dimension greater than 50, and up to 300.
Data processing. To counter class imbalance, we could apply downsampling to our data. A custom
loss function weighting heavily losses on minority class labels may be another solution. On the side
of text processing, we could introduce a token for words not in the embedding dictionary.
Model extensions. We could explore bidirectional LSTMs, especially since end of articles may
contain relevant conclusions. Implementing the word-level attention described in [8] is another
possibility.

6.3 Conclusion

In this project, we managed to beat the 79.5% competition score baseline with a Conditional En-
coding LSTM with Attention which yields a 80.8% score. Our work demonstrates the efficiency of
attention techniques in extracting from a long sequence (the article bodies) information relevant to
a small query (headline). Further work on modeling, processing and parameter tuning could enable
us widening the gap with the competition baseline.
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8 Appendix

8.1 Data Characteristics

Figure 5: Distribution of article headline lengths

Figure 6: Distribution of article body lengths
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8.2 Hyperparameter Selection for Models

Figure 7: Competition score of simple attention model with varying number of hidden layers
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Figure 8: CEA Competition scores with varying number of hidden layers

8.3 Final Model Performance

Table 2: Hyperparameters of the final models are shown as used in for the test set evaluation.

Hyperparameter BOW Basic LSTM Attention LSTM CEA LSTM

max length NA 75 75 NA
lr 0.005 0.001 0.001 0.001
hidden size 100 100 100 100
n classes 4 4 4 4
attention length 15 15 15 15
b max len 600 NA NA 75
batch size 128 128 128 128
downsample FALSE FALSE FALSE FALSE
dropout 0.8 0.8 0.8 0.8
embed size 50 50 50 50
h max len 42 NA NA 42
hidden next 0.6 0.6 0.6 0.6
n epochs 40 40 40 40
n layers 1 2 2 2
num samples 39977 39977 39977 39977
trainable embeddings Variable Variable Variable Variable
vocab size 1193515 1193515 1193515 1193515
epoch 40 40 40 40
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Figure 9: Training Loss rapidly decreases for most models. All models but BOW achieve close to 0
traingin loss.

14


	Introduction
	Competition Details
	Description of Data
	Scoring
	Official Baseline model

	Relevant Literature
	Approach and Methods
	Preprocessing
	Models
	Bag of Words
	Long Short Term Memory Network (LSTM)
	Attention
	Attention Model 1 - Modified Simple LSTM
	Attention Model 2 - Conditional Encoding LSTM

	Evaluation
	Parameter Tuning Experiments

	Results
	Length truncation and benefits of attention
	Hidden layers study
	Test performance overview

	Discussion
	Limitations
	Future Work
	Conclusion

	Contribution of Team Members
	Appendix
	Data Characteristics
	Hyperparameter Selection for Models
	Final Model Performance


