Extractive Question Answering Using Match-LSTM
and Answer Pointer

Alexander Haigh, Cameron van de Graaf, Jake Rachleff
Department of Computer Science
Stanford University
Stanford, CA 94305
Codalab username: Jjakerachleff
{haighal, camvdg, jakerach}@stanford.edu

Abstract

One of the major goals of Natural Language Processing is understanding text,
and, in particular, reading comprehension (RC): the ability to read a passage and
answer a question about it. The recently released Stanford Question Answering
Dataset (SQuAD) is one of the first robust RC datasets and introduces the com-
plexity of variable length and open-ended rather than multiple choice answers.
Here, we replicate the match-LSTM with Pointer Net model introduced by Wang
and Jiang (2016) and apply their boundary model to directly predict the start and
end indices of the answer. Our model shows proof of concept and achieves basic
functionality but falls short of the original authors’ results. We analyze our results
and suggest future model modifications to help achieve or surpass theirs.

1 Introduction

The Stanford Question Answering Dataset is a collection of over one hundred thousand pairs of
questions and answers from different articles. Each answer in the SQuAD dataset is a subsequence
of the paragraph the original question asks about. With the recent rise of compute power and deep
learning, this relatively new dataset has allowed computer scientists around the world to test the
bounds of complex comprehension models. Each model created to predict answers is benchmarked
against human performance, which performs at 91 percent F1 and 82 percent exact matches.

Successful models for machine comprehension, like many other NLP tasks, often use end to end
neural network architectures as they capture a complete idea of the relationships between questions,
contexts, and answers. These models have been a vast improvement over previous NLP based
models which used techniques such as dependency syntax and frame semantics. The gold standard
for such models, published ten days before this paper, performs at a level of 84 percent F1 and 77
percent EM, remarkably close to human performance.

In this paper, we aim to describe the process of implementing such an end to end model. Researchers
often leave out key implementation details when discussing their work - we try to replicate their
model. Specifically, we will walk through the steps of implementing Wang and Jiang’s aforemen-
tioned Match-LSTM model. This model is an end to end system that includes preprocessing data
with an LSTM, creating an attention vector with a bidirectional LSTM, then feeding the attention
vector into a Pointer Net that predicts the start and end locations in the context of the answer. Wang
and Jiang successfully recorded an F1 of 77 and an EM of 67 on their best model (granted, as an
ensemble).

2 Related Work

The match LSTM model refers to several concepts brought into vogue by past researchers. The im-
plementation of the algorithm relies heavily on the recurrent nature and temporal understanding of
Long Term Short Memory, introduced by Hochreiter and Schmidhuber in 1997. In our implementa-
tion, this is extended into a bidirectional LSTM model for both preprocessing and matching, which
was introduced in 1997 shortly after by Schuster and Paliwal to understand words both forwards
and backwards in time. The attention vector created by the bidirectional LSTM furthers work on
attention by Manning et. al in NLP in 2015 to understand certain parts of a context and question’s
relationship in higher focus. Finally, the output layer was based heavily on Pointer Net, introduced
by Vinalys et. al in 2015, which allowed certain sequences of words to be chosen as outputs. Our
own work is based heavily off of the previously described match LSTM by Want and Jiang. Our
model includes dropout, a concept introduced by Srivastava et. al in 2014 to reduce overfitting in
neural networks.

3 Approach

The formal task on the SQuAD dataset, as well as the structure of our model, are as follows. Sample
question/paragraph/answer triples can be found in section 4.4.

o Inputs: A question ¢ = {q1, ..., o} of length @) and a context paragraph p = {p1,...,pp}
of length P.

e Output: An answer span {as, a.} where as is the index of the first answer token in p, a. is
the index of the last answer token in p, 0 < ag,a. < m, and a5 < a..

In our model, we represent words as d-dimensional embeddings from the GloVe dataset, which
was trained on over 6 billion tokens from Wikipedia and the Gigaword 5 datasets. We use these to
represent our paragraph as P € R”*? and our question as Q@ € R?*¢, We then use a three-layer
neural network model to predict a5 and a.: (1) A forward-only LSTM that preprocesses P and
@ passages to create contextual encodings of each (H? and HY, respectively), (2) A bidirectional
Match-LSTM that tries to align our question and paragraph encodings, and (3) a Pointer-Net that
predicts the start and end tokens of the answer within the passage.

Answer
a a
Pointer Layer ho hl

Match-LSTM
Layer

LSTM
preprocess-

ing Layer

forp E i 55h°°|3

P i

:
LST™M T 2 T
preprocess- q , .
ing Layer h3 "

forQ Why did Tesla ?

Figure 1: Model architecture. For each Match-LSTM timestep, we compute an attention vector over
H and concatenate that to HPs value at that timestep. This is then fed into another LSTM (one in
each direction) and used to compute 57 and (3 (originally appeared in Wang and Jiang 16).

3.1 LSTM Preprocessing Layer

Here, we run standard one-directional LSTMs (introduced by Hochreither and Schmidhuber, 1997)
over P and Q:

H? = LSTM(P) and H? = LSTM(Q)

Where HP € RP*" and H? € R?*" (h is the hidden size, the same across all letters). Intuitively,
this means that the i*"* row of HP is the output of the LST M over P at timestep 4, and the same for

Q.
3.2 Match-LSTM Layer

As originally proposed by Wang and Jiang (2016), we sequentially apply match-LSTM to align the
question and paragraph. At each timestep ¢ in the context paragraph, we use a word-level attention
mechanism to create an attention vector a;; € R1*%. We then apply this attention vector to H9 and
concatenate it with the corresponding timestep’s vector in H? (h?) to create an intermediate vector
z;. We then feed z; into a standard LSTM and track its output, hi. Mathematically, this is:

G, = tanh(HIW? + (WYW? + h]_ W’ + b") ® eq)
a; = softmax(Giw + b ® eq)
zZ; = I:h‘:) Otin]
h] = LSTM(z;,h]_,)

Here, h! is the i'" row of H,, h!_, is the output of the LSTM described in the last equation

7
(initialized to O for the first timestep), and e means to repeat the vector on the left until we have a

matrix or row vector of the same dimensionality of the other. This is implemented using the function
tf.tile().

The dimensionality of the model weights and intermediate layers are as follows:

e Wi WP W1 e R

o G, c R@xh

o bP h] € RI*h 4 e Rhx1
e beR

We run this match-LSTM %both the forward and backward direction. ﬁ " are the forv%rd %STM
outputs at each timestep, H" are the backward LSTM outputs at each timestep, and H", H" €
RP>*"_ That is:

f W
ﬁr = : and HT =

N :
43 o,
We concatenate these two matrices to create a joint encoding H™ € R *2h:
(it]

3.3 Answer Pointer Layer

Rather than sequentially predicting or classifying the tokens, we directly model the probability of
the answer having start index a, and end index a.:

p(@s, aelHr) = p(as|Hr) X p(ae‘a& Hr)

We generate two probability distributions 51 = p(as|H,) and B2 = p(a.|S1, H,) as follows:

F, =tanh(H"V + (h;,_{W* +b%) ® eq)
B = softmax(Fv + ¢ ® eq)
& =LSTM(B;H,,hi_;)

Here, the weights and intermediate components have the following dimensionality:

e V.W© ER2hXh

o F, ERPX}L

o b € R*h p e RMX1
° hk €R1><2h

e ceR

We apply the above recurrence once with an initial k¥ = (0 to generate 3;, then use 3; as an
attention vector over H, and feed the product into an LSTM to generate h{. Using this conditional
encoding, we apply the recurrence again to generate s.

Once we have the probability distributions, we predict as, a. by searching for the highest joint
probability:

(as,a.) = arg 0 fflléjlxg P 51,z‘ X 52,;‘
i< <i+20

We train our model by minimizing the sum of cross-entropy losses
Loss = CE(B1, W)+ CE(fB, V)

where 7 is a one-hot vector with a 1 at the actual start index and 0 elsewhere and ¥ is a one-hot
vector with a 1 at the actual end index and O at the others.

3.4 Model Settings

We initialize the model using GloVe word embeddings from Pennington, Socher, and Man-
ning (https://nlp.stanford.edu/projects/glove/); our default model used
100-dimensional embeddings, but, as described in the next section, we also experimented with
300-dimensional embeddings. If a word embedding was not in the GloVe vocabulary, it was
initialized as a zero vector. We did not update word embeddings during training.

Based on the dataset statistics described below, we capped question length at 20 and context
paragraph length at 250. These numbers allowed us to use 98%-+ of the dataset, while keeping
padding to a minimum (we also used t £ . nn.dynamic_rnn to help speed up rnn’s). We ignored
any samples with context paragraph length greater than 250 and used exponential masking to zero
out the probability distributions (5;’s and «;’s).

We use different weights for both the forward and backward passes of the match-LSTM; we also
use separate cells for the two preprocessing letters.

As in Wang and Jiang (2016), we use a hidden layer dimensionality h = 150. We used the
TensorFlow AdamOptimizer with learning rate .001 and minibatches of size 32. Depending on
word embedding size, our model had 1,800,000 - 2,100,000 parameters.

Our initial model did not use dropout or L2 regularization. In later models, we applied dropout to
the non-recurrent connections in the model using a procedure similar to the one in Zaremba et. al
(2015). We applied pgrop = 0.3 to model’s inputs (PP and Q) before the preprocessing layer as well

Count Mean Std min 25% 50% 75% 85% 99% max

Context 81386 137.525066 56.993778 22 101 126 164 190 324 766
Question 81386 11.31659 3.739408 1 9 11 13 15 23 60
Answer 81386 3.409653 3.830426 -1 1 2 4 5 21 46

Table 1: Descriptive statistics of the SQUAD dataset

as to H" before the Answer Pointer Layer.

Our evaluation metrics were F1 and “Exact Match” (EM). To compute F1, we treat the predicted
answer span for each question and the actual answer span as bags of tokens and compute their F1
(harmonic mean of precision and recall); we average this across all samples. EM is simply the
percentage of triples on which the predicted span exactly matches one of the ground truth answers.

4 Experiments

We tested a number of different combinations of word embedding sizes/sources, hidden layer di-
mensions, search implementations, dropout configurations, etc. over the course of the project -
however, due to time constraints we were unable to conduct these investigations with the rigor that
we would have liked. That is to say that many of the variables were changed simultaneously in
an effort to boost performance, making it difficult to assess the explanatory power of any single
variable. Nonetheless we

4.1 Dataset

As mentioned above, we made use of the Stanford Question Answering Dataset (SQUAD) which
contains 107,785 question, context paragraph, and answer span triplets sourced from Wikipedia.
The methodology for collecting these data was to randomly sample 536 of the top English-language
articles on the site, extract individual paragraphs, and then contract individuals on Amazon Mechan-
ical Turk to devise question-answer pairs for the given paragraphs. Answers were further validated
by having two other participants attempt to answer the questions - these answers were then turned
into the three ground truth reference points. Once the dataset was finalized, it was split into train
(80%), dev (10%), and test (10%) by the creators of the dataset [1]. For this project, the training
set was further subdivided into a main training set and a validation set. In order to devise optimal
ranges for question and context masking/padding we computed a range of descriptive statistics and
histograms for the lengths of the question, context, and answers (Table 1 and figs. 1-3).

Context Histogram Answer Histogram

Figure 2: Question Lengths Figure 3: Context Lengths Figure 4: Answer Lengths

4.2 Results

Dropout and Embeddings
Our most rigorous experiment / model variation involved comparing two models with different
dropout rates and word embedding size. More specifically, we observed that when we switched from

Train Train Dev Dev Test Test
F1 EM F1 EM Fl1 EM

Human - - - - 90.5 80.3
Wang and Jiang Match-LSTM - - 772 67 669 77.1
(*) Our baseline Match-LSTM 77.6 64 40.5 27 - -
Ours + dropout + grad. clip 519 39 4177 284 - -

(**) Ours + 300d vectors + dropout 60.3 46 43 34 45 35

Table 2: Summary of Model Results. Our experiment results compared with human-level perfor-
mance and the best model from Wang and Jiang, who introduced the Match-LSTM. The 2nd and 3rd
models used dropout on non-recurrent connections in the preprocessing and Answer Pointer layers,
and the third used 300-dimensional GloVe embeddings instead of 100-dimensional ones.

word embeddings with length 100 (trained on the Wikipedia corpus) to embeddings with length 300
(trained on Gigaword) and simultaneously changed the dropout rate from 0 to 30%. After 10 epochs,
the baseline achieved an F1 of 40.5 and an EM of 27 compared to 43 and 34 for the improved model
respectively. Moreover, in later trials comparing dropout percentages of 15% and 30%, we observed
that learning improvement (as measured by validation F1 and EM scores) continued into later epochs
(9 and 10) for the latter model compared to the former model - which would often plateau at epoch
6or7.

Length

We examined whether the length of questions and contexts had any predictive effect on the F1 and
EM scores received. Beginning with contexts, we observed an almost completely monotonically
decreasing relationship between the context length and F1/EM scores. F1 decreased from 49.24 at
a context length of 40 to 39.28 at a length of 160 and 25.5 at a length of 340. A similar trend could
be observed between question length and performance, with F1 accuracy diminishing from 45.35
at a question length of 5-10 tokens vs. 35.5 at a length of 20+ tokens. These results make intuitive
sense from a probabilistic and modeling perspective, since a shorter context length obviously has a
smaller search space.

Reading Levels

Another interesting experiment we undertook was investigating the potential impact of context word
complexity (understood in terms of human reading level) on the accuracy of our model. Specifically,
we used the textstat Python library’s ”Reading Consensus” measure to measure an estimated reading
comprehension grade level for each context paragraph. This measure is driven by a number of
factors including syllable count, the Dale-Chall Readability Score, and the SMOG index among
others (all described in detail at https://pypi.python.org/pypi/textstat). Fascinatingly, we did not
observe any correlation between reading level and model performance. For levels 8 through 12,
which encapsulated over 80% of the dataset, each level hovered around between an F1 score of
43-45.

4.3 Analysis of Selected Errors

In order to understand why our model performed poorly, we decided to look at the questions we
missed and tried to derive reasons why.

Let us consider the dev context that contains a list of many Harvard grads as follows ”...conductor
Leonard Bernstein; cellist Yo Yo Ma; pianist and composer Charlie Albright;...”” This is a simple
structure, showing connection between occupation and name. Questions were of the form “What
is the name of world renowned cellist is a former Harvard student?” Of the four questions asked
of this form, all were answered with random names. From these random answers, we realize that
though the model has learned to pick out the proper part of speech in the context, but cannot pick
out the correct name based on the occupation in the question. The fact that our model cannot use a
relationship between two words in the question to find that same relationship in the answer shows
that our match layer is broken. When creating the attention layer, we do not properly encode these

045 Performance of Baseline vs. 300d Embedding Model 9 Loss and Gradient Magnitude Over 10 Epochs

— Gradient Norm
8 — Train Loss

Loss/Gradient Magnitude

Baseline F1
300d F1
Baseline EM
300d EM

L1

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Epoch Epoch

Figure 5: Comparison of Baseline and Im- Figure 6: Train Loss and Gradient Magnitude
proved Models over Time

relationships. This in part accounts for our decrease in performance in comparison with the original
paper’s implementation.

Upon further investigation, we found that our project often missed dependencies in high complex-
ity sentences. Consider the following sentence: “The Super Bowl 50 halftime show was headlined
by the British rock group Coldplay with special guest performers Beyonce and Bruno Mars, who
headlined the Super Bowl XLVII and Super Bowl XLVIII halftime shows, respectively.” When an-
swering questions about guest performers, super bowl numbers, and other auxiliary information, the
model spits out Coldplay as the answer. We believe that the lack of encoded dependencies makes
it impossible for our model to understand sentences like this where there are many levels of word
dependencies. Thus, the simple issue described in the above paragraph is intensified in questions
like these. This could be made worse by the fact that we did not train word embeddings, and thus
did not encode extra dependency information into our words and help counteract this effect. With
more time on this project, we would debug exactly why the attention layer does not encode said
information, and would test if training word embeddings would increase our performance.

5 Conclusion

In this paper, we develop a model for question answering on the SQuAD dataset based on match-
LSTM and Answer-Pointer first proposed by Wang and Jiang (2016). Our experiments show proof
of concept and a basic functional model, though not approaching state-of-the-art or Wang and Jiang’s
best single boundary model.

In the future, we plan to build on this promising start by doing a more exhaustive hyperparameter
search to fully tune the model (we did not yet experience a ”U-shape” in F1 and EM from overfitting)
as well as ensembling this with a sequence based model. We also plan to explore parameter sharing
between the forward and backward layers of our match-LSTM as well as different word embedding
strategies: different embedding sizes, training all embeddings, and initializing out-of-vocabulary
words to random vectors that we then train. Exploring these strategies could prove particularly
useful since many OOV words are nouns and often the answer to the question. Finally, we will look
into more advanced attention mechanisms to align the question and paragraph encodings (and more
advanced encoding mechanisms, e.g. bi-LSTM preprocessing), since this is one of our model’s
weaknesses.

6 Acknowledgements

Thanks to Professors Manning and Socher and the entire CS224N teaching team for an engaging,
difficult, and ultimately very fun quarter. Special thanks to everyone who helped us in office hours
and/or answered our late night Piazza questions throughout the quarter!

7 Contributions

Alex Haigh: I worked out a lot of the math from the match-LSTM paper and converted the column
vector notation to row vector notation. Along with Cameron and the rest of the team, I wrote
the initial implementation of most of ga_model . py, and debugged it along with the other team
members. I also wrote our data loading scripts in util.py Most of my time was spent debugging
the model (including time alone), running downstream experiments, and making the poster. The
writeup was split fairly evenly between all team members.

Cameron Van De Graaf: I wrote scripts to gather introductory statistics and plot histograms on the
dataset. I worked out much of the math from the match-LSTM paper in greater depth in advance
of implementation and coded/debugged a significant portion of ga_model . py in conjunction with
Alex Haigh. T also conceived and ran several experiments, collecting the results and plotting all
visualizations.

Jake Rachleff: With the rest of the team, I worked a lot on working out the model. Specifically, I
worked heavily on the prediction layer. I was the most experienced software engineer on the project,
so I worked on a lot of debugging tensorflow, creating utility methods like padding data, all of
ga-answer.py, setting up technologies like codalab, etc. Like everyone else, I spent significant
time working on ga_model . py.

8 References

[1] Rajpurkar et. al. SQuAD: 100,000+ Questions for Machine Comprehension of Text. arXiv:1606.05250v3,
2016.

[2] Wang and Jiang. Machine Comprehension Using Match-LSTM and Answer Pointer. arXiv:1608.07905v2,
2016.

[3] Zuremba, Sutskever, and Vinyals. Recurrent Neural Network Regularization. arXiv:1409.2329v5, 2015.

[4] Xiong, Zhong, and Socher. Dynamic Coattention Networks For Question Answering. arXiv:1611.01604v3,
2017.

[5] Wang, Bansal, Gimpel, and McAllister. Machine Comprehension with Syntax, Frames, and Semantics.
http://ttic.uchicago.edu/ dmcallester/ACL2015.pdf, 2013.

[6] Hochreiter and Schmidhuber. Long Short-Term Memory. http://ieeexplore.ieee.org/document/650093/,
1997.

[7] Schuster and Paliwal. Bidirectional Recurrent Neural Networks.
http://dl.acm.org/citation.cfm?id=2205129, 1997.

[8] Luong, Pham, and Manning. Effective Approaches to Attention-based Neural Machine Translation
arxiv:1508.04025, 2015.

[9] Vinalys, Fortunato, Jaitly. Pointer Networks. arxiv: 1506.03134, 2015.

[10] Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting https://www.cs.toronto.edu/ hinton/absps/JMLRdropout.pdf, 2014.

