Coattention-Based Multi-Perspective Matching Network for
Machine Comprehension

Qiujiang Jin Bowei Ma
Institute of Computational and Mathematical Engineering
Stanford University
Stanford, CA 94305
{gqiujiang, boweima}@stanford.edu
Codalab username: QiujiangJin, boweima
Codalab worksheet: cs224n-QiujiangJin
Codalab submission group: ¢224n-JQJandBWM

Abstract

Machine comprehension, the task for machine to understand the contextual meaning of a passage,
is a central yet challenging problem in natural language processing. In this paper, we focus on the
question answering task based on the SQuAD dataset and construct a system utilizes the power of
coattention mechanism and multi-perspective context matching to formulate a powerful question-
paragraph co-dependent encoder in order to aggregate the matching vectors from multiple perspec-
tives to predict the answer span to the question. Experiment result on the test set of SQUAD shows
that our model achieves a decent prediction result.

1 Introduction

Reading comprehension is as the level of understanding of a text/message. This understanding comes from the inter-
action between the words that are written, and how they trigger knowledge outside the text/message. Usually reading
comprehension contains the process of reading the context, processing the words or sentences, and then extract concep-
tual meaning of the whole document. The procedure is known to be a convoluted system involving semantic processing
(encoding the meaning of a word and relate it to similar words), as well as structural and phonemic recognition and
the processing of sentence and word structure.

Endowing machines to achieve such capacity is coveted goal for natural language processing. The task of Machine
Comprehension (MC) is to enable machine to understand a given paragraph and then answer questions related to the
paragraph. In recent years, several work has collected various datasets to tackle such task. However, the limited
size of the previous generated dataset prevents researchers from building end-to-end deep neural network models,
and the state-of-the-art performances are still dominated by the methods highly relying on hand-crafted features. Such
situation was tremendously changed as Rajpurkar et al. (2016) [[1] developed the Stanford Question Answering dataset
(SQuAD). Comparing with other datasets, SQuAD is more challenging and promising since the volume of the dataset
is over 100 thousands of question-paragraph-answer triplets, which is a reasonable amount for any end-to-end deep
neural network models to fit, and also since the answer could be an arbitrary span span within the passage instead of a
limited set of multiple choices.

In this work, we focus on the SQuAD dataset and implemented an end-to-end deep neural network model containing
a multi-perspective matching scheme incorporated with coattention to identify the answer span by constructing a coat-
tention encoder which matches the context of each word in the paragraph with the question from multiple perspectives.
Experimental result on the test set of SQuAD shows that our model achieves a good training result.

In following parts, we start with a discussion of task definition and related work in Section 2, followed by the details
of our deep neural network model in Section 3. Then the numerical experiment results in Section 4.

2 Question Answering Mechanics

2.1 Task Definition

Generally, a Question Answering (QA) system instance involves a question, a paragraph containing the answer, and the
correct answer span within the passage. For the SQuAD dataset, such triplet is represented by the following examples:

Table 1: Example from the SQuAD dataset

Question: Because such oaths are in violation of the First Amendment, they’re what?

Paragraph: The required beliefs of these clauses include belief in a Supreme Being and belief in a future state of
rewards and punishments. (Tennessee Constitution Article IX, Section 2 is one such example.) Some of these same
states specify that the oath of office include the words “’so help me God.” In some cases these beliefs (or oaths)
were historically required of jurors and witnesses in court. At one time, such restrictions were allowed under the
doctrine of states’ rights; today they are deemed to be in violation of the federal First Amendment, as applied to the
states via the 14th amendment, and hence unconstitutional and unenforceable.

Answer: unconstitutional and unenforceable

Mathematically, one sample from the SQuAD dataset could be formulated by a triplet (Q, P, A), where Q =

(LL‘?, :cgg, -, 29) denote the sequence of word vectors corresponding to the word in the question with length m,
P = (2 2F ... xP) denote the sequence of word vectors corresponding to the word in the paragraph with length

n,and A = (as, a.) denote the answer span such that a is the index of the starting position of the answer and a. is the
index of the ending position of the answer. Then, the question-answering task could be be represented by estimating
the conditional probability Pr(A|Q, P) and predicting answer for testing data by

A* = argmax Pr(4|Q, P) (1)
A€ A(P)

where A(P) is a set of possible answer spans generated by some metric function of answer prediction. In this work,
we make a simple Bayes assumption that the prediction of starting and ending index are independent, which simplifies
the prediction mechanism as

A* = argmax Pr(as|@, P)Pr(a.|Q, P) 2)

1<as<ac<n

2.2 Related Work

Traditional approaches to question answering typically involve rule-based algorithms or linear classifiers over hand-
engineered feature sets. Wang et al. (2015) [2[] described a statistical model utilizing syntactic features such as part of
speech tags and dependency parses, as well as frame semantic features.

Wang et al. (2015) described a statistical model using frame semantic features as well as syntactic features such as part
of speech tags and dependency parses. For the SQUAD dataset, the original paper from Rajpurkar et al. (2016) [/1]]
implemented a linear model with sparse features based on n-grams and part-of-speech tags present in the question and
the candidate answer.

However, since the emerge of SQuAD dataset, various neural attention models have been proposed to tackle the QA
task. Wang et al. (2016) [3|] proposed a multi-perspective context matching model to match question embeddings
with paragraph embeddings and then aggregate the matching vectors to make prediction. Xiong et al. (2016) [4]

proposed an encoding-decoding mechanism utilizing coattention after encoding questions and paragraphs and then
use the coattention summary to train a dynamic Bi-LSTM to predict the answer span. In this work, we constructed a
more complex model utilizing the merits of the above formulations to complete the QA task.

3 Multi-Perspective Coattention Network

In this section, we illustrate the detailed formulation of our Multi-perspective Coattention Network (MPCN). Figure|[I]
shows the architecture of our MPCN model.

Pr(a,1Q, P) Pr(a.1Q, P)
softmax softmax
Multi-Perspective Matching II I I I I
m = (my, -, mj, =, My)
(R
Bi-LSTM Bi-LSTM

II." II< >II." II

P T o

I I I I—> Coatention Encoder
P

A TE T
*
,
)

P=(p1,".pn - Q=1 .qm)
Relevancy matrix .
Paragraph Question

A

Figure 1: Architecture for Multi-perspective Coattention Network

3.1 Paragraph And Question Coattention Encoder

Given the sequence of word vectors P, (), the word embeddings is a pre-trained set of vectors with GloVe. We feed
each word into a Long Short-Term Memory (Hochreiter & Schmidhuber, 1997) [5]]. That is, we encoding the question
as: q¢ = LSTM(g;—1, x?) and we define the encoding matrix as Q = [q1,¢a, " - , ¢m] € R*™, where [is the hidden
state size of the LSTM.

The paragraph embeddings are computed with the same LSTM to share representation power: p; = LSTM(p;_1, 2})
and the resulting encoding matrix P = [p1, p2,--- , pn) € RX™.

Notice that in most cases, only a small portion of the paragraph is relevant to the corresponding question. For instance,
the only needed information in the example in Table 1 is the last sentence in the paragraph. Hence, using a filter to
aggregate the influence of question onto the paragraph should be beneficial for our learning purpose.

Inspired by Wang et al.(2016) [3]], we compute the relevancy degree r; ; between each word pair ¢; € @ and p; € P
by calculating the cosine similarity
Ty,
q; Pj
llgallllps |
Then, for each word p; € P, we compute the relevancy of p; and () as r; = max;c(1,...) ri,; and filter each word
by pj; = r;p; and the resulting filtered paragraph encoding as P’ = [p’,p}, -+, py,].

Tij =

Then we use a coattention mechanism that attends to the question and paragraph in the same time, similar to the
coattention mechanism described in (Xiong et al., 2016) [4], which compute the affinity matrix L = (P")TQ and
normalized row-wise and column-wise respectively by softmax to produce attention weight matrices A9 and A”.
Mathematically, we compute

A@ = softmax(L) € R™*™ AP = softmax(LT) € R™*"

Next, the attention summary C'© of paragraph corresponding to each word in the question is computed as C¢ = PA%,
and similarly we also compute the attention summary C'* of paragraph corresponding to each word in the question is
computed as C* = QAL.

Then we concatenate the columns of C% and @ to form a coattention matrix Q* representation for question (), where
each column ¢ can be represented as ¢ = 953 c?] as a co-dependent representation of the paragraph, as the attention

context. Similar procedure is carried out for the paragraph which results a coattention matrix P* for paragraph P

where each column p* = [p/; ¢/’]. Note that the symbol [a; b] is used as the concatenation of vectors a and b.

The last step is to incorporate contextual information into the representation of each time step in the passage and the

question via a bi-directional LSTM. That is, we run a Bi-LSTM to encode contextual embedding for each question
word:

BE=LSTM(HL 1, q7), =1, ,m)

B =ISTM(BC), i=m,- 1 @)
Also, the same Bi-LSTM is utilized to encode the paragraph.

WP —LSTM(KE .p), i=1,---.n)

WP = LSTM(H L. p2), i=mn,- .1 ©)

3.2 Multi-Perspective Context Matching

The goal of multi-perspective context matching is to compare each contextual embedding of the passage with the
question with multi-perspectives. As suggested in (Wang et. al) [3]], we first define a comparison metric function

w = fu(v1,v2; W) € R? (7
where d is the number of perspectives, vy, vo € R! and W € R?*! is a trainable parameter matrix. In this way, each

component wy € m represents a matching value from the kth perspective, and is calculated by the cosine similarity
between the two weight vectors

= Wiowv ®)
29 = Wi owg)
T
wy = —1 22 (10)
[z [[]] 22l

where the symbol o represents the Hadamard product of vectors, and Wy, is the k-th row of W. Then, three strategies
of comparing contextual embeddings are conducted:

e Full-Matching: for each position in the paragraph, the paragraph embedding of the such position is compared
to the first forward and backward representation of the entire question (i.e., the first and last embedding
vectors of the question)

wi —fw(hJ Q:wh) (11
ol = f, (P W) (12)

The reason for utilizing such comparison is to match the information in the paragraph on the left or right with
respect to the entire question. For instance, in the example given in Table 1, only the left context information
is needed to match the entire question.

e Maxpooling-Matching: for each position in the paragraph, the paragraph embedding of the such position is
compared to every forward and backward embedding of the question, and then we take the maximum result:

—>p =
B — _ max }fw(hf, h 2 Ws) (13)
—p
fgmar = _ ax }fw(hf, h 2 Wy) (14)

The reason for utilizing such comparison is to match the most important and relevant information in the
paragraph with respect to the entire question. For instance, in the example given in Table [I} only the left
context information is needed to match the entire question.

e Meanpooling-Matching: similar to maxpooling-matching, for each position in the paragraph, the paragraph
embedding of the such position is compared to every forward and backward embedding of the question, and
then we take the average value:

l e, —=p =
Bean Ewa(hf, h W) (15)
1=1
I N, e p
fgmean — ~ > fulh?, h 9 We) (16)
1=1

The reason for taking the average matching metric is to try avoiding information loss and capturing the overall
meaning of the question as well as incorporate the meaning with the paragraph.

Finally, we construct a matching vector for each position in the paragraph by concatenating all the previous computed
matching vectors. Hence, for position j in the paragraph the final matching vector is

w; = [E}Jf_ull; %;ull; E};naz; %;nax; ﬁ;nean; %;nean] c Rﬁd (17)

3.3 Aggregation Decoder

Now we aggregate the matching vectors so that each position (time step) of the paragraph can interact with its sur-
rounding positions by applying a Bi-LSTM as

Uj; = Bi—LSTM(uj_l,uj_H,wj) (18)
Given that we have computed a fairly complex network for question and paragraph encoding, to avoid overfitting

we just use two different simple one-layer feed-forward neural network to predict the probability distribution of
Pr(as|Q, P) and Pr(a.|@, P) by normalize the logit results from the neural network by softmax operatiion.

4 Experiments

4.1 Experiment Settings

We evaluate our model using the SQuAD dataset with 81381 training examples and 4284 validation examples. We use
pre-trained GloVe word vector embeddings (Manning et al., 2014) [6]] with embedding size of 100. As suggested by
the initial paper (Rajpurkar et al., 2016) [1]], we employ Exact Match (EM) and F1 score as evaluation metrics.

Due to the limitation of time and computing power, we set the size of hidden state to be 70, and the number of matching
perspectives to be 30. We initialized the learning rate to be 0.01, and apply exponential decay of learning rate with
V51

ratio ¥->— after each epoch.

Figure [2]illustrates the length distributions of training set. For complexity consideration, we set the maximum length
of question to be 30 and maximum length to be 300. More importantly, over 99.9% answer spans lay in the range of
(0,300) so it is fairly safe to ignore the examples exceed the above limit during training.

To train the model, we minimize the average cross entropy loss of the starting and ending indices and use the ADAM
optimizer (Kingma and Ba, 2014) [7] to update parameters.

14000 0012

12000 0010

10000
0008
0.006
0004

0002

0 0000 —
0 10 2 £y 4 50 0 0 100 200 300 400 500 600 700 800
Question length Paragraph length

(a) Distribution of question length (b) Distribution of paragraph length

Figure 2: Length distributions of training data set (with estimated kernel density distribution)

4.2 Experiment Results

Table [2] summarizes the performance of our model. Further analysis of experiment are carried out in the following
sections.

Table 2: Results on the SQuAD dataset

Dataset \ Evalution Metric F1 EM

Train 587 49.6
Development 495 363
Test 499 374

4.3 Result Analysis

To better understand the behavior of our MPCN model, we conduct some analysis of the result of training process and
analysis of errors on the dev set.

A plot of the cost as the number of epochs

1 A plot of the F1 and EM score as the number of epochs

o
o

12

=
o

o

I

o«

o
ol
W

y axis: the value of the lost

IS

— F1 of train
— EM of train
— F1 of validation
—— EM of validation

o
o

y axis: the value of the F1 and EM on the train and validation

o
o

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
x axis: the number of epochs x axis: the number of epochs
(a) Average training loss versus epochs (b) Evaluation scores versus epochs

Figure 3: Training performance versus epochs

4.3.1 Training Performance Analysis

Figure 3] shows the training performance versus epochs, and from the plots we may notice that:

e The model learns well during the first 5 epochs. The loss drops form around 12 to around 3. The F1 and EM
score on the train set and validation set rise to around 48 and 43, respectively.

e However, after epoch 5 the model seems to learn very slowly and those scores seem to not improving a lot
even though the model is not overfitting.

e One possible explanation is that the small size of the hidden state and matching perspectives are impeding
the learning ability of our model. The implementation of our model may not reflect the deeper semantic info
of the paragraph with respect to the question.

4.3.2 Error Analysis

Table [3] summarizes the performance of several different question types for randomly selected 1000 examples in the
dev set. We can notice that

e the performance for questions whose answer spans location, time, name are much higher than the others.
One possible reason is that for those kind of questions usually the answer lies just a few words apart from

the exact keywords of the question, and such temporal expression patterns are easier to detect by the use of
full-matching vectors and the coattention scheme.

Table 3: Performance for selected different question types

Question \ Evalution Metric F1 EM

what year 79.6 78.0
who 67.6 60.3
where 654 62.7
what is 63.2 55.6
how long 582 521
how many 553 515
why 32.1 252
what has 294 20.7
how did 21.3 165

e the performance for reasoning “who”, ”how did” questions whose answer is usually much longer, needs
comprehensive understanding of the context and also much further from the question keywords are much
lower than the others. This may due to the use of maxpooling-match vectors which draws too much attention
on the words which is the most similar to question keywords instead of understanding the context itself, and
the lack of effectiveness of meanpooling-match vectors.

e Furthermore, Table 4] summarizes the exact accuracy of prediction of starting and ending indices. We may
notice that our model has done a pretty good job on predicting the starting point of the answer, but has barely
learnt the ability to decide where to stop. Such phenomenon may be the result of the coattention scheme
putting too less attention on the actual ending point of answers and trying to predict an acceptable but more
”complete” answer instead.

Table 4: Accuracy of answer span prediction

Dataset \ Accuracy Startindex End index

Train 70.4% 30.6%
Development 68.7% 26.3%

5 Conclusion

In this work we formulate a coattention-based multi-perspective matching model to realize the question answering task
and get some proper result. The model contains a coattention encoder which learns the co-dependent representation
of question and paragraph and a matching scheme for incorporating information of question into the paragraph from
multiple perspectives. We have realized the complexity of machine comprehension and yet there is still many aspects
for us to improve the system, such as a more careful training with dropout and gradient clipping, or more exploration
of hyperparameter tuning by the cost of validation set and even revise the architecture of our matching scheme and
representation of answer. Our model has done well on some specific types questions, but it still needs to be perfected
to tackle questions which need more comprehensive understanding.

6 Contribution

e Qiujiang Jin: implementation of the model, literature review
e Bowei Ma: implementation of the model, project report writeup, result analysis

References

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[2] Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. Machine comprehension with syntax, frames, and
semantics. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing, (Volume 2: Short Papers):700-706, 2015.

[3] Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. Multi-perspective context matching for machine
comprehension. arXiv:1612.04211, 2016.

[4] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question answering.
arXiv:1611.01604, 2016.

[5] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997.

[6] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and David McClosky.
The stanford corenlp natural language processing toolkit. In ACL (System Demonstrations), pages 55-60, 2014.

[7] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

	Introduction
	Question Answering Mechanics
	Task Definition
	Related Work

	Multi-Perspective Coattention Network
	Paragraph And Question Coattention Encoder
	Multi-Perspective Context Matching
	Aggregation Decoder

	Experiments
	Experiment Settings
	Experiment Results
	Result Analysis
	Training Performance Analysis
	Error Analysis

	Conclusion
	Contribution

