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Abstract 
Reading comprehension is an important task in NLP, which involves teaching 
a machine to understand text enough to answer questions. The Stanford 
Question Answering Dataset (SQuAD) is a dataset consisting of 100,000 
question-context-answer datapoints. Here, deep learning methods are used to 
answer questions based on context data. A model based on the Attentive 
Reader [1,2] model is used as a baseline, with elements of a Dynamic 
Coattention Network [3] applied. Co-dependent attention representations that 
combine the individual representations of the question and context paragraph 
are implemented. The model is evaluated using F1 and exact match (EM) 
scores.  

 

1 Introduction 
Teaching a machine to understand text is a difficult task – especially when human performance 
is not perfect [4]. Traditionally, machine comprehension has relied on multi-step processes 
that include steps such as linguistic and feature analysis, syntactic or dependency parsing, 
named entity recognition, an many others. With recent advances in deep learning, there have 
been many studies done that concentrates on applying neural network models to this task.  

Recently, the SQuAD dataset was released, which consists of 100,000 question-context-
answer datapoints[4]. SQuAD is useful because each answer is contained in the context, and 
it is significantly larger than any previous quality datasets – though other large datasets exist, 
they have been machine-generated and are of a different nature [1]. 

 

Tesla gained experience in telephony and electrical engineering before 
emigrating to the United States in 1884 to work for Thomas Edison in 
New York City. He soon struck out on his own with financial backers, 
setting up laboratories and companies to develop a range of electrical 
devices. His patented AC induction motor and transformer were licensed 
by George Westinghouse, who also hired Tesla for a short time as a 
consultant. His work in the formative years of electric power 
development was involved in a corporate alternating current/direct 
current "War of Currents" as well as various patent battles. 

Q: In what area of the United States did Tesla move to?  

A: New York City 

 

Table 1: A sample from the SQuAD dataset. The context paragraph is at top, with the question 
and answer at bottom.  



Here, I base the model off of the Attentive Reader[1,2], with parts of the Dynamic Coattention 
Network applied [3]. Coattention is used to capture the interaction/relationship between the 
question and the context paragraph, which is not captured in a baseline model.  

 

2 Background 
 
A number of deep learning-based studies applied to reading comprehension have been 
conducted. Some of them are detailed below.  
 
3 .1  Deep LSTM Reader 
 
LSTMs are commonly used in many NLP applications [5]. Deep LSTMs have the capability 
of handling much longer sequences due to their ability to encode data while preserving 
significant amounts of information. The Deep LSTM reader concatenates the context and the 
question, and feeds it into a uni- or bidirectional LSTM.  

 
Figure 1: A Deep LSTM reader (two layer). Figure from [2] 

 
3 .1  At tent ive  Reader 

The Attentive Reader model attempts to improve on the shortcomings of the Deep LSTM 
Reader [6]. Deep LSTMs are good at embedding data into vectors, but to answer questions 
they must propagate question-answer dependencies through potentially long spans. The 
Attentive Reader model introduces an attention vector based on the question that can be 
multiplied with the context representation.  

 

Figure 2: an example of one Attentive Reader model. Here, r represents the attended context 
representation, and u represents the question representation. Figure from [2] 

 
3 .2  Dynamic  Coattent ion Networks 
 
An attention mechanism can help a lot with reading comprehension, but does not fully 
encapsulate the interactions between the context and the question. Dynamic Coattention 



networks [3] aim to solve this by introducing a coattention mechanism. In the DCN, an affinity 
matrix consisting of the product of the embedded question and context representations is used 
to generate a coattention mechanism. In addition to the coattention mechanism, the authors 
propose a Highway Maxout Network (HMN) that combines the strengths of Maxout Networks 
[7] and Highway Networks [8].  

 

3 Methods 
 
Here, I create a baseline inspired by the Deep LSTM and Attention models, but implementing 
a simplified coattention mechanism. Instead of feeding the encoded coattention context into a 
HMN, it is fed into a feedforward network as a decoder. The structure is as follows: 
 
3 .1  Data  Encoding 

To encode the question and context paragraph data, a BiLSTM [] is used for each, with the 
word vectors xi as input: 

dt = BiLSTMenc(dt-1, dt+1, xt
D) 

qt = BiLSTMenc(qt-1, qt+1, xt
Q) 

Where [x1
D, x2

D, … xn
D] are the context word vectors and [x1

Q, x2
Q, … xm

Q] are the question 
word vectors. The hidden states dt and qt are concatenated to form D and Q, of dimension lxn 
and lxm, respectively, which are the encoded representations of the data and question. This is 
the baseline encoder.  

 
3.1  Coat tent ion 

It is desirable to create an attention mechanism that can capture the relationships between the 
words in the question and context simultaneously. I follow the logic of [3], creating and 
affinity matrix L: 

L = DTQ 

L is an m by n matrix, that is the product of the hidden state representations of each word in 
the context and question. Next, the softmax is used on each row and column to produce 
attention weights across the context document D for each question word in Q, and vice-versa: 

AQ = softmax(L) 

AD = softmax(LT) 

We then use these to find the attention contexts: 

CQ = DAQ 

CD = [Q;CQ]AD 

In the second term, CD is referred to as the coattention context in [3]. The next step combines 
the temporal information from the context paragraph with the coattention context, and feeds 
it into a BiLSTM: 

ut = BiLSTM(ut-1, ut+1, [dt;ct
D]) 

 
3.2  Decoding 

Finally, the two end states from this BiLSTM are concatenated. I call this rin: 

rin = [us;ue] 

Two matrices of weights, WD1 and WD2, both of dimension lx4l, are introduced: 

r1 = WD1 rin 

r2 = WD2 rin 



 

Figure 3: a schematic of the neural network architecture. Shown are the encoding, coattention, 
and decoding schemes in red, orange, and blue, respectively. At the bottom, a_s and a_e 
represent the start and end pointers/locations of the answer in the context paragraph, 
respectively.  
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Both of these are of dimension lx4l. In the last step, each of these is passed through a single 
feed-forward layer to produce probabilities for the start and end locations for the answer to 
the question.  

 
The Adam optimizer [9] is used in training, and the two encoding BiLSTMs incorporate a 
dropout function with a parameter of 0.7. In training, we minimize the softmax cross entropy 
loss [10]. We train over a dataset of ~81,000 datapoints over 20 epochs with a learning rate 
of 0.0015, and test on a dev dataset consisting of 10,570 datapoints.  
 
4 Results and Discussion 
 
4 .1  Evaluation  Metr ics  

The model was evaluated using two metrics: the F1 score and the Exact Match (EM) score. F1 
is based on the precision (p) and recall (r): 

 

Where p and r are defined as: 

 

Both metrics are used for a couple reasons. EM is a valuable metric for obvious reasons – it 
measures how many answers were exactly correct. However, if an answer is not exactly 
correct, such as if the answer start and/or end are off by a couple words, it would not be 
captured by EM alone. Thus we need another measure of overlap, which is F1.  
 
4 .2  Evaluation  Resul ts  

Evaluation was done locally on ‘val’ and ‘dev’, and on CodaLab on ‘dev’ and ‘test. Scores for 
dev and test are as follows: 

From evaluating locally on the dev dataset, an F1 of 8.918 was obtained. An exact match score 
of 2.374 was obtained. On CodaLab, results were very different. On the dev dataset, an F1 of 
0.811 and em of 0.038 was obtained. This is a strange result and one that I did not have enough 
time to resolve. This is possibly due to a bug in my online submission and evaluation scripts. 

From evaluating on the test dataset, an F1 of 0.775 was obtained. An exact match score of 
0.094 was obtained. 

 
4.3   Error Analysi s  and Discuss ion 

These are extremely low, so it is rather difficult to conduct a detailed analysis. The higher F1 
score implies that some answers contained parts of the ground truth, but may have contained 
more or less words on either side. Examining successful predictions, the vast majority of 
successful exact matches were one or two words long, suggesting that the model is better at 
predicting short answers (see Fig. 4).  

Looking at the results, there were a significant number of answers that were empty. This could 
have been due to a suboptimal model, or because the answer start pointer was after the answer 
end pointer.  

An interesting phenomenon was that the majority of correctly answered questions consisted 
of numbers, commonly a date (examples include ‘June 1978’, ‘2nd century BCE’, and ‘1996’) 
or a number (examples include ‘eleven’, ’60 minutes’, and ‘900,000’). This suggests that the 
model did learn how to answer numerical questions better than others.  

 



 

Figure 4: a histogram of the answer length of successful exact matches. 

 
 

 

Figure 5: A plot of f1 and exact match scores, vs. epoch evaluated locally on ‘val’. Note that 
the scores were still rising when training was ended due to time constraints.  

 



It is clear that the results are not optimal. This could have been due to a number of reasons, 
but a significant reason could have been model training. It took a long time to train the model, 
and though the F1 and EM scores more or less rose every epoch, they were still rather low 
when training stopped. Additionally, and relatedly, the parameters were not optimal.  
 
The parameters were set as default at first. It was difficult to tune due to the long training 
times involved, and I was only able to adjust them a handful of times. Finer hyperparameter 
tuning could have made a difference. 
 
Looking at a graph of training scores, it looks like the model did not converge by the 17th 
epoch (see Fig. 5), and that the training scores were still rising steadily. Running the training 
for a larger number of epochs would have helped.  
 
Also, overfitting is a possibility. Training took a long time, and though the loss steadily fell, 
the F1 and EM scores did not always rise. Given that the hyperparameters were not 
exhaustively tuned, this is a significant possibility. Dropout was added to the baseline model, 
but  adding dropout to more parameters, such as W_D1 and W_D2, or adding L2 regularization 
could help avoid overfitting.  
 
Additional possible reasons are a bug in the model, or the model is just not powerful enough 
for the task, due to the simplifications that were made in implementing the Coattention 
mechanism.  

 
5 Conclusion 
 
The model was unsuccessful. The F1 and EM scores were very low. The model did show that 
it could predict numerical answers and short answers at a higher rate than other answers, 
however. There are many improvements that could be made to improve the model in the 
future, including training for longer, tuning hyperparameters more finely, experimenting 
with adding more regularization, and changing the model.  
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