
Abstractive Text Summarization using Attentive
Sequence-to-Sequence RNNs

Elliott Jobson Abiel Gutiérrez

emjobson@stanford.edu abielg@stanford.edu

Abstract
In this work, we aimed to emulate the baseline of state-of-the-art abstractive text
summarization models, with the intention of exploring different attention mechanisms
upon having a decent working baseline. We decided to get inspiration specifically from
the sequence-to-sequence recurrent neural networks model built by the IBM Watson team
(Nallapati et al., 2016), which achieved outstanding results by implementing several
unique features. We built a total of three iterations, adding improvements with regards to
the word embeddings, encoder-decoder complexity, and attention. For the third model,
we implemented a bilinear attention mechanism, which improved the rate of training loss
decrease.

1 Introduction
1.1 Background
Summarization refers to the task of creating a short summary that captures the main ideas
of an input text. For our project, we focus on abstractive summarization, which generates
the summary through paraphrase. By comparison, extractive summarization works by
extracting only words found in the input.

Models for abstractive summarization fall under a larger deep learning category called
sequence-to-sequence models, which map from an input sequence to a target sequence.
Although sequence-to-sequence models have been successfully applied to other problems
in natural language processing, such as machine translation, there remains a lot of room
for improvement for state-of-the-art models in abstractive summarization. Despite the
fact that state-of-the-art models are able to achieve high ROUGE scores (the standard
metric for evaluating abstractive summarization models) on summaries for small inputs,
models often lose their ability to summarize key points once inputs become large.
Although hierarchical attentive models have had some success in summarizing large
inputs, they still have a long way to go. Thus, the task of document summarization is an
open problem in natural language processing.

1.2 Plan
We set out with the goal of producing a model for abstractive summarization, starting
with the RNN encoder-decoder baseline model implemented by the IBM Watson team
(Nallapati et al., 2016). From there, we hoped to explore the effectiveness of different
methods for attention in abstractive summarization. Specifically, we planned to
implement global attention using the dot product scoring function (ht

 T hs), bilinear form
(ht

 T Wa hs) as proposed by (Luong et al., 2015), and a new format in which an output

projection from the hidden states of the RNN encoder to scalar "importance scores" is
used in the attention scoring function.

We used the Unannotated Gigaword Corpus, an archive of newswire text, to train our
data.

2 Related Work
 In this section, we’ll establish the baseline used in models for abstractive
summarization, then walk through modifications to the baseline that have achieved state-
of-the-art results. Despite the clear differences between abstractive summarization and
machine translation, the attentional RNN encoder-decoder model proposed in (Bahdanau
et al. 2014) has become standard in abstractive summarization. For both tasks, the
encoder generates a representation of the input, while the decoder uses these encodings to
create the final outputs.

2.1 Baseline
As a baseline model, Nallapati et al., (2016) proposes the use of a bidirectional GRU
encoder, a unidirectional GRU decoder, an attention mechanism over the source's hidden
states, and a softmax layer over the vocabulary to generate target words. Nallapati then
adds a variety of features such as the large vocabulary trick, feature-rich encoding of key
words, and use of pointer networks to model rare words; we won’t dive into these in
order to focus on attention.

2.2 Large Vocabulary Trick
Speeding up convergence and addressing the computational bottleneck caused by the
softmax computation over the entire vocabulary, the “large vocabulary trick,” proposed
by Jean et al., (2014) restricts the decoder vocabulary of each mini-batch to words in the
batch’s source documents. It then adds words from the target dictionary until the
decoder’s vocabulary reaches a set size. This approach focuses the model on words that
come from the source, making it effective for summarization.

2.3 Out of Vocabulary Pointer
Training the model requires restricting the decoder vocabulary, so it will inevitably run
into words it does not recognize. Many models handle this by outputting an “UNK” token
in place of the unknown word. Instead, Nallapati et al., (2016) allowed the decoder to
choose, at each timestep, between producing a word in regular fashion and generating a
pointer to some source word, which is then outputted in the summary.

3 Approach
All three of the models we implemented were based on an encoder-decoder RNN
baseline. For our different models, we experimented with attention and word embedding
initializations. For abstractive summarization, it is commonplace to use either GRU or
LSTM cells for the RNN encoder and decoder. We elected to use LSTM cells for their
extra control via their memory unit, although many top models use GRU cells for their
cheaper computation time (Nallapati et al., 2016).

3.1 Preprocessing and Dataset
We trained our model on sentence-headline pairs from the Unannotated English
Gigaword Corpus, which is commonly used for training models for abstractive
summarization. During preprocessing, we pulled out 700,000 pairs of headlines and first
sentences, and we trained our model to predict the headline given the first sentence.

3.2 Model Basics
Model 1:

The first model we implemented was a simple unidirectional encoder-decoder LSTM,
with randomly initialized word embeddings. As we will mention later, we soon realized
that it would be wiser to use pre-trained word embeddings, so we quickly iterated upon
this model to create Model 2.

Model 2:

Next, we implemented a model with a bidirectional LSTM encoder and a unidirectional
LSTM decoder.

Model 3:	

For our last model, we used a
bidirectional LSTM encoder, and
we added global attention to the
LSTM decoder. We used the
attention scoring functions
specified in section 3.4. The final
(forward and reverse) hidden
states of the encoder are
concatenated and are used as the
decoder’s first hidden states.

3.3 Word Embeddings
In Model 1, we randomly initialized the word embeddings and allowed the model

to update them during training. In doing so, we hoped that the learned word vector
representations would become more suited for summarization than pre-trained Word2Vec
or GloVe vectors. However, we quickly realized that computational and time constraints
would prevent the realization of this goal, as it would take a high number of iterations on
a large dataset to develop accurate word embeddings for the task.

 Given that training word embeddings on a large dataset was not an option, we
loaded pre-trained GloVe vectors to create our embedding matrix for Model 2 and Model
3. To simplify the implementation, we used the same embeddings and vocabularies for
both the encoder and decoder. However, other models such as the one proposed by Rush
et al., (2015) train different embedding matrices for different tasks within, thus improving
the vector’s notion of semantics within the context in which a word appears.

Model 3: Attentive Encoder-Decoder LSTM

3.4 Attention
For encoder-decoder neural networks, the use of attention allows for the creation

of a context vector at each timestep, given the decoder’s current hidden state and a subset
of the encoder’s hidden states. For global attention, the context vector is conditioned on
all of the encoder’s hidden states, whereas local attention uses a strict subset of the
encoder’s hidden states. For our Model 3 implementation, we utilized two different
scoring functions, which are used as the weights when averaging the hidden states to
produce the context vector.

score(ht, hs) = ht
 T hs (dot product form)

score(ht, hs) = ht
 T Wa hs (bilinear form)

The scoring functions are then used as follows:

at(s) = softmax(s)

Applying the softmax function to the raw scores creates a probability distribution over
the encoder’s hidden states, which are then used to create the context vector as follows:

ct = 𝑎(𝑠)ℎ!

ct is a context vector at timestep t with the same dimensionality as the decoder hidden
states. Finally, we use ht and ct to compute the next hidden state in the decoder, ht+1:

ht+1 = tanh(W[ht ; ct] + b)

3.4 Handling Varying Sequence Lengths
Because input and output sequence lengths vary, we standardized all inputs to be some
max length by padding short sentences with PAD tokens and cutting off longer sentences.
This padding was taken into account in both the scoring and loss functions, preventing
the model from updating parameters that should not be updated.

3.5 Generating Summaries
At test time, the model’s decoder feeds its output as a word embedding input into the next
decoder cell. For an LSTM, the output at time t = ht. Because using hidden states with
dimensionalities equal to the size of the model’s vocabulary would take too long to train,
the outputs of the LSTM decoder cells are actually dense vector representations of the
final outputs. By using an affine transformation in the decoder from output ht, we
generate prediction word predictions as follows:

yt = Wht + b

W ∈ R(V, H)

Projecting the dense vector through the affine transformation allows us to create a
probability across the entire vocabulary size, and then take an argmax in order to be able
to index into the embedding matrix and retrieve the input for the next time step.

3.6 Training and Testing
At training time, our model decoders take in article truth embeddings as input at each
timestep. This allows the model to learn to output predictions given some inputs x, and
prediction history context, yc. During testing, however, the model’s decoder feeds its
output as a word embedding input into the next decoder cell.

We used Adadelta, an alternative to the Adagrad algorithm, for our gradient descent
algorithm. We chose Adadelta because it handles sparse data well, making larger updates
to parameters with small frequencies and smaller updates to parameters with large
frequencies. This becomes really useful when handling large vocabulary sizes, since
common words start to appear much more often than non-common words.

3.7 Scoring and Loss Function
To train the model, we minimize the
negative log probability of prediction word y
given an input x and context yc.

losst = -log p(yt | x, yc)

CE(p, q) = - 𝑞(𝑤) 𝑙𝑜𝑔 𝑝(𝑤)! = - log p(w)

4 Experiments

 After implementing and successfully
training and testing baseline models, we hoped to
begin to explore new attention functions. Specifically, we intended to explore a
possibility proposed to us by our mentor Abi – to improve the ability of the model to
identify key information by allowing the encoder hidden states to output scalar
“importance scores,” which would be used in calculating the attention scores. We hoped
to use these scalars by either directly modifying the attention scores, or by concatenating
them to their corresponding encoder hidden state vector.

We had planned to use ROUGE to evaluate our results, but unfortunately, we lacked
sufficient time to train a competitive model.

We did, however, test a very different strategy on our last attempt. Rather than training
on 100,000 training data points, with 5,000 vocabulary size, and 10 epochs, we switched
to 1,000 data points, with 3,000 vocabulary size, and 600 epochs. By epoch 80 we were
seeing predicted summaries whose first word made sense according to the ground truths,
even though the first word was not directly copied from either the article or the headline.

5 Limitations
 Our biggest limitation was the lack of time left after finishing the implementation
of our attentive encode-decoder RNN model. For lack of a better word, abstractive
summarization is a messy task – training and truth data are not well-aligned, compared to

Model 1 Loss

the near one-to-one alignment for machine translation. Therefore, the model must learn to
interpret nuances in order to map from input text to summary. As such, models that have
achieved success in this task often train for days with a high number of trainable
parameters (i.e. from a large vocabulary size, or large hidden state size). As an example,
IBM Watson’s model (Nallapati et al., 2016) took 8 days to train on Tesla K40 GPUs.
Given that we wished to iterate continuously in order to tune hyperparameters, it was
difficult to train the model for sufficient time to the point where outputs were meaningful.

6 Results
Though we successfully managed to implement the attentive encoder-decoder RNN
summarizer used as a baseline in the model by Nallapati et al. (2016), we lacked

sufficient training time, trained our Model
3 on bad data for most of its training
time, and ran into multiple problems with
the Azure GPU.

The first time we attempted to train Model
3, we trained it for 10 epochs on 100,000
sentence-headline pairs. We used 200-
dimensional encoder and decoder cells,
200-dimensional GloVe vectors, and a
vocabulary size of 5,000. The loss

decreased from 8.667 to 6.5843, but upon viewing
the predictions on the development set, we realized

that the model had begun to output purely UNK tokens, for the maximum possible length
output. To diagnose the problem, we revisited the data upon which we were training our
model, and the method by which we initialized the model’s vocabulary.

To initialize a vocabulary of size V, we took the V most common words from the entire
preprocessed dataset and used them to create our embedding matrix. However, the V ⋍
10,000 most common words in the entire Unannotated English Gigaword Corpus is still
much smaller than the number of unique words in our initial 100,000 example training
set. Therefore, many of the truth values were represented as UNK tokens. Consequently,
UNK was by far the most common word in the truth values, and the model learned to
minimize loss by repeatedly outputting UNK.

Without sufficient time to train our model on a large dataset so that it could generalize
well to unseen data, we decided to train our attentive encoder-decoder RNN model on a
small dataset, where the vocabulary of the model is identical to the unique words in the
training and development sets. This got rid of the issue where the UNK token got printed
repeatedly, and even started printed words that made sense, even though these results
were evaluated only at epoch 80 of 600:

Model 3 Loss

The word “breakthrough” is predicted for a ground truth summary “today in history”, and
“funded” is predicted for a ground truth summary of “taiwan to offer loans to <unk>...”

Although we won’t have time to run through the 600 epochs by the deadline, these results
confirm our earlier suspicions -- that this task requires a lot of training time. This also
means that our model is definitely headed in the right direction.

7 Conclusion
This was our first experience creating a big data project from scratch, and the amount of
learning we have accomplished is incomparable to any other project we have done.
Creating all the starter code was a big challenge; despite being able to lean on the code of
the previous assignments for this class, we had to understand what each function call did.
It was nice to play around with features of TensorFlow and Python that we simply took
for granted on earlier assignments, such as the logger, the saver, the arg parser, and the
prog bar, among other things.

We had never created scripts to process big amounts of text input, so thinking about the
time and memory ramifications of every design decision was a really interesting
procedure. When using TensorFlow, we grappled with really poor documentation and
strange limitations within the contrib libraries that we had to solve ourselves. We ended
up modifying the source code several times in an attempt to debug a problem or two. The
most fun part was definitely the exploration of the model once we had the baselines
working. Unfortunately, we weren’t able to do this as much as we’d like, but now we
know how important it is to leave time to tinker with all possible variables -- as shown
above, our last iteration with a small data set and a much more substantial number of
epochs seems to be going in the right direction through 80 out of 600 epochs. We are
confident that if we run our final model on this data set through the entire epochs (which
we’ll do shortly after this submission), it will do a much better job at outputting a
meaningful summary.

Finally, getting a taste for what a Computer Science research project looks like has been
immensely gratifying. Reading and contrasting different papers to know what new
features to add to your model provides for a different learning framework than the one
provided in the regular teaching environment. We look forward to taking other classes
involving artificial intelligence and deep learning, and use the knowledge gained here to
reach working baseline models much quicker, such that we’ll be able to do much more
exploring.

7.1 Contributions
Both of us contributed evenly to the project.

References:
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural Machine Translation

by Jointly Learning to Align and Translate." [1409.0473] Neural Machine
Translation by Jointly Learning to Align and Translate. N.p., 19 May 2016.

Jean, Sébastien, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. "On Using

Very Large Target Vocabulary for Neural Machine Translation – Sampled
Softmax."The Neural Perspective. N.p., 26 Oct. 2016.

Luong, Thang, Hieu Pham, and Christopher D. Manning. "Effective Approaches to
Attention-based Neural Machine Translation." Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing(2015).

Nallapati, Ramesh, Bowen Zhou, Cicero Dos Santos, Caglar Gulcehre, and Bing Xiang.

"Abstractive Text Summarization Using Sequence-to-sequence RNNs and
Beyond."Proceedings of The 20th SIGNLL Conference on Computational
Natural Language Learning (2016).

Rush, Alexander M., Sumit Chopra, and Jason Weston. "A Neural Attention Model for

Abstractive Sentence Summarization." [1509.00685] A Neural Attention
Model for Abstractive Sentence Summarization. N.p., 03 Sept. 2015.

