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Abstract 

Recent progress in deep learning has allowed for significant strides in natural  
language processing. Here, a model for using deep learning to answer 
questions was proposed and implemented. The model can accept a text based 
question and a text based context paragraph in which the correct answer can 
be found. The model will generate a prediction for where in the context 
paragraph the answer to the question lies. The model involves representing 
questions and contexts as lists of word vectors, applying an attention 
mechanism to the context words and passing the results through a 
bidirectional LSTM. This method produced a model that can answer 
questions in a way that gives an F1 score of 33% and an exact match score 
of 19%. 

 

1 Background 

 

The ability for a machine to answer any question asked of it has numerous applications from 
artificial personal assistants, to medical diagnoses, fact checking and beyond.  For this reason, 
it is worthy of much research. Past approaches have involved representing words as numerical 
vectors and allowing a model to learn temporal patterns in sentences and the approach laid out 
in this paper will follow a similar path. The model presented in this paper learns based on 
seeing questions answered correctly. Because of the way it learns, the model is not effective 
at answering questions that are very dissimilar to what it has seen before. 

Models in this paper were trained and tested on the Stanford Question Answering Database 
(SQuAD) which contains thousands of questions, contexts and answers.  Three sections of this 
dataset were taken for this project and split into datasets for training, validating and testing. 
All computations in this paper were executed on a Microsoft Azure standard NV6 GPU with 
6 cores and 56 GB memory. 

 

2 Metrics  

 
Two primary metrics were used in evaluating models, F1 score and Exact Match (EM) score. Both 

metrics compare the similarity of the predicted answer to a question to the actual answer. F1 score 

rewards predicting words that occur in the actual answer while punishing false positives and false 

negatives. It is computed as follows: 

 



𝐹1 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Where 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
# 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑛𝑠𝑤𝑒𝑟

# 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
# 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑛𝑠𝑤𝑒𝑟

# 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑛𝑠𝑤𝑒𝑟
 

 

EM score is a simple measure of what percentage of the time the predicted answer is exactly the 

same as the actual answer.  

 

Both F1 and EM can be computed in two different ways. One way is to use the words predicted by 

the model and compare them to the words in the actual answer. The other is to compare the 

predicted and actual starting and ending locations of the answer in the context. The former is the 

standard used for evaluating EM and F1 scores provided by the team that created SQuAD, the 

latter was constructed for the purposes of this research to gain more insight into the results. 

Though they produce similar scores, the two models have subtle and instructive differences.  

 

The core concept behind evaluating where in the context the model looks for the answer rather 

than what answer it produces comes from the way the model is trained. The model is not learning 

to produce an answer completely on its own, but rather, it is learning where to look in a context 

when a question is asked. For this reason, having this alternative formulation for F1 and EM can 

be useful in that it allows us to select models that are looking in the right places better than the 

SQuAD standard calculations. 

 

The difference between calculating F1 and EM scores based on answers vs context locations is 

best illustrated with examples. The following is an example context-question-answer triplet from 

the SQuAD dataset used to train the model.  

 

Context: 

The map of earthquake intensity published by CEA after surveying 500,000 km2 of the affected 

area shows a maximum liedu of XI on the China Seismic Intensity Scale (CSIS), described as "very 

destructive" on the European Macroseismic Scale (EMS) from which CSIS drew reference. 

(USGS, using the Modified Mercalli intensity scale (CC), also placed maximum intensity at XI," 

very disastrous".) Two south-west-north-east stripes of liedu XI are centered around Yingxiu, 

Wenchuan (the town closest to the epicenter of the main quake) and Beichuan (the town 

repeatedly struck by strong aftershocks including one registering MS 6.1 on Aug 1, 2008), both in 

Sichuan Province, occupying a total of 2,419 km2.  

 

Question: What was the intensity scaled at? 

Correct Answer: XI 

Model’s Answer: XI 

 

On the surface, it appears that the model correctly identified the answer to the question and, 

indeed, this is what SQuAD models for EM and F1 conclude. However, where the model found 

this answer shows that it is not that simple. 

 

The correct context for finding the answer to this question is as follows: 

 

“The map of earthquake intensity published by CEA after surveying 500,000 km2 of the affected 

area shows a maximum liedu of XI on the China Seismic Intensity Scale (CSIS)” 

 



This is intuitive to a human reader and it is indeed the location SQuAD gave as correct. 

The model, on the other hand, looked for an answer in a different part of the context: 

 

“Two south-west-north-east stripes of liedu XI are centered around Yingxiu” 

 

This does not represent where a human would find the correct answer and does not represent the 

kind of behavior from the model that should be rewarded. In other words, we do not want to 

reward the model for just getting lucky. In addition, SQuAD F1 and EM calculations omit the 

common articles “the”, “an” and “a” from its calculations. This prevents cases where one of these 

articles is the predicted answer and right next to the correct answer from being considered as any 

better than guessing nothing at all. For these and similar reasons, location based EM and F1 scores 

were considered in addition to the SQuAD versions when determining which model architectures 

to pursue. 

 

The EM and F1 scores shown throughout the rest of the paper refer to scores on the validation 

dataset unless otherwise noted. All scores, with the exception of final test scores, are calculated 

with 100 fixed samples from the validation dataset. 

 

3 Model  Architectures  

 

3 .1  Archi t ec ture s  Ov erv iew  

 

Several different architectures and features were tested in this research for their effect on the 

question answering model’s effectiveness. These are described below. 

 

3 . 1 .1  B a se l ine  

 

This is the model that all other architectures in this paper are based on. Where descriptions of 

other models in this paper lack detail, the models simply copy what was implemented in this 

model. This is the minimum functional model. In this model, both question and context are 

received in text format. They are then converted to word vectors of length 100 using pretrained 

GloVe embeddings. This model contains two different bi-directional long short term memory cells 

(bi-LSTMs), one for the question and the other for the answer. Both LSTMs have the same hidden 

size, here set to 75. The question and context are put through their respective bi-LSTMs to 

generate hidden vectors and outputs. These bi-LSTMs allow the model to look for patterns in the 

questions and contexts both forward and backward in time. The two hidden vectors of size [hidden 

size] for the final state of the question bi-LSTM (one in each direction) are concatenated to form 

vector q of size [2*hidden size]. The outputs of the context bi-LSTM for each word are 

concatenated as well to form matrix X of size [2*hidden size, context length], where context 

length is the number of words in the context paragraph. The inner product of q and X is taken to 

create a new vector of length [context length]. A softmax is applied to this vector and the resulting 

[context length] vector is called p. Vector p represents the probability that the answer to the 

question lies at each index in the vector. In this case, predicted answers are only ever one word. 

Cross entropy between vector p and the one-hot vector a_s, which represents the actual index of 

the start of the answer is one component of loss, L1. The other component of loss, L2, is 

determined by cross entropy between vector p and the one-hot vector a_e, associated with the 

index of the end of the answer. These loss components are combined to make total loss.  

 

𝑙𝑜𝑠𝑠 = 𝐿1 + 𝐿2 =  𝐶𝐸(𝑎𝑠, 𝑝) + 𝐶𝐸(𝑎𝑒 , 𝑝) 
 

Loss is minimized with the Adam optimizer with a default learning rate of 0.001. When it is 

producing answers, the index of p with the highest probability is taken as the index of the answer 

in the context paragraph. 

 

 



3 .1 .2  At t ent io n  

 

The attention model adds a key feature to the baseline model. Before the context word vectors are 

passed into their bi-LSTM, they are weighted according to their relevance. First, both question 

vectors and context vectors are normalized. Then, for each context word, the inner product 

between the normalized context word vector c and each normalized question word vector, q_i, is 

found. The highest product for that context word becomes a scaling factor for the context word 

vector. This scaling factor is used to create an attention-weighted context word vector, c_attn. 

 

𝑐𝑎𝑡𝑡𝑛 = 𝑐 ∗ max (𝑐 ∗ 𝑞𝑖) 

 

This modified c_attn is then passed into the context bi-LSTM and the rest of the model runs as 

usual. The introduction of this feature results in significant improvements in performance, as 

shown in Table 1, and was implemented as part of the final model. This is an important feature 

because it allows the model to focus on areas of the context that are more relevant to the question 

and not become distracted by superfluous information. This attention model was inspired by Wang 

et al [1]. 

 

3 .1 .3  Quest io n  At tent io n  

 

This model is the same as the Attention model with the modification that now, the question word 

vectors are also modified before going into their bi-LSTM. Each word vector in the question is 

multiplied by a scaling factor proportionate to how similar the word is to the most similar context 

word. This method did not exhibit an improvement in performance and was not included in the 

final model. A likely reason for this is that the words similar between the context and the question 

were already sufficiently emphasized with just the context attention method.  

 

3 .1 .4  M ult ip le  At t ent io n  Pa sses  

 

This methods attempts to capture the fact that it can be helpful to read over a context multiple 

times before deciding what the important parts really are. Here, the architecture is similar to the 

Attention model except the outputs of the context bi-LSTM are re-fed into the context bi-LSTM 

before moving on. This mechanism was found to hinder model performance. This is likely 

because, the way it was implemented, this model just dilutes the outputs of the context bi-LSTM 

rather than adding any new insights. 

 

3 .1 . 5  LSTM  Deco der  

 

This model starts out the same as the Attention model but the matrix X is multiplied elementwise 

by q and the product of these is fed into a single direction decoding LSTM. The hidden states of 

this decoding LSTM are separately multiplied by two different trainable weight matrices. The 

outputs of these products are then put through a softmax and called p_s and p_e respectively. Loss 

for this model is calculated as follows: 

 

𝑙𝑜𝑠𝑠 = 𝐿1 + 𝐿2 𝐶𝐸(𝑎𝑠, 𝑝𝑠) + 𝐶𝐸(𝑎𝑒 , 𝑝𝑒) 

 

This model then found its prediction for where in the context the answer ends by finding the index 

in p_e with the highest probability, provided it was a higher index than the answer’s start index. 

This model did not improve performance, possibly because it was overcomplicating the process of 

finding the start location and was not able to find where the answer began anymore.  

 

3 .1 .6  Sepa ra te  S ta r t  a nd  End Pred ic t io ns  

 

This model is similar to the LSTM Decoder model only without the LSTM. Predictions for p_s 

and p_e are made using trainable weights but this time the weights are applied to X rather than a 

new LSTM’s outputs. This model did not show improvement and was not implemented. It is 



possible this model just needed more time to train but a more effective way of  handling sentences 

of variable length was found in the next model making further study of this model less pressing. 

 

 

3 .1 .7  Leng th  Pred ic t io n  

 

This model is the Attention model with the addition of the ability to predict the length separately 

from the starting position. Here, the elementwise product of q and X is taken, multiplied by a 

trainable weight and added to a trainable bias. The result is passed through a rectified linear unit to 

force it to be non-negative and called the length of the answer (where length 0 is one word, length 

1 is two words, etc.). This length is added to the predicted index for the answer’s start to give a 

predicted index for the answer’s end. This index is then turned into a one-hot vector p_e and used 

to compute the new L2 for loss. 

 

𝐿2 = 𝐶𝐸(𝑎𝑒 , 𝑝𝑒) 
 

This feature showed improved performance on the validation dataset and was incorporated into the 

final model. The improvement is likely because it removes the restriction that the predicted 

answers can only be one word long. The loss calculation in this case suffers the disadvantage that 

it is all or nothing in regards to whether a prediction is correct but empirically this mode still 

improves performance. 

 

3 .1 .8  Dro po ut  

 

This model is the same as the Attention model except it applies dropout to the matrix X. This 

model shows no improvement over the Attention model at one epoch but, as implementing 

dropout causes training to slow, requires additional evidence against it to exclude it from the final 

model.  

 

3 .2  Pro o f  o f  co ncept  t e s t ing  

Table 1: Performance across architectures 

 

Model 
Time 
(min) 

SQuAD 
F1 

SQuAD 
EM 

Location 
F1 

Location 
EM 

Baseline 11 21.7% 13.0% 22.1% 11.0% 

Attention 11 35.0% 20.0% 34.6% 18.0% 

Question Attention 12 32.9% 15.0% 29.4% 7.0% 

LSTM Decoder 15 4.9% 1.0% 7.3% 1.0% 

Separate Start and End Predictions 13 15.2% 10.0% 18.2% 10.0% 

Multiple Attention Passes 22 35.5% 20.0% 35.1% 16.0% 

Length Prediction 12 37.7% 23.0% 37.9% 19.0% 

Dropout 12 33.1% 19.0% 32.1% 16.0% 
 

To ensure they were viable, all model architectures were tested after training for 1 epoch. The 
results of this testing are shown in Table 1. Attention, and Length Prediction both showed an 
immediate improvement. 

 

 

 

 



3 .3  Further mo de l  t e s t i ng  

 

 

Figure 1: Model performance 

Figure 1 shows the results of training the most promising model architectures for five epo chs. 
Somewhat counterintuitive was that dropout does not give an improvement. Analysis of the 
training scores showed that training scores and validation scores were very similar, suggesting 
that no overfitting was occurring and that dropout was unnecessary.  This analysis showed that 
the Length Prediction method yielded the best results, which is congruent with what was found 
when training for only one epoch. Because of this, the Length Prediction method was chosen 
to perform further tuning on. 

 

4 Hyperparameter Tuning  

 
Once the final architecture of the model had been solidified, hyperparameters were tuned to 

optimize the performance of the model. The two key hyperparameters that were tuned were 

learning rate and hidden size. 

 

4 .1  Lea rning  Ra te  

 

Learning rate is a parameter used by the model’s optimizer, in this case Adam, to influence how 

much the model parameters should change based on new information. Higher learning rates allow 

for bigger changes and can allow the model to converge faster but are vulnerable to overshooting 

and being too sensitive to a new input which can prevent the model from converging entirely. To 

find the right balance, various learning rates were tested for performance. During these tests, 

hidden size was kept constant at 75 and number of epochs was kept constant at 1.  

 

 

Figure 2: Learning rate tuning 
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All metrics used in this analysis agree that a learning rate of 0.001 is optimal for this model. This 

learning rate was used for all experiments and results going forward. Since the learning rate was 

optimized over a hidden size and number of epochs that was not used in the end, these results are 

imperfect but still provide useful insight to guide the shaping of the model. With a larger hidden 

size, the model can take more time to learn and a higher learning rate may be desired. Conversely, 

with more epochs to train over, the model has more time to learn and learning rate may not need to 

be as high to pick up on patterns. The very basic assumption made here is that these effects cancel 

each other out and the optimal learning rate found here is valid for the final model. Further 

investigation would be necessary to determine the validity of this assumption but for now the 

assumption should be sufficient to build a functional model. 

 

4 .2  Hidden  S ize  

 

Hidden size is the dimension of the hidden vector used in the LSTM process. It is common 

between both LSTMs used. Having the hidden size be constant between LSTMs takes away some 

of the customizability of the model but simplifies the evaluation and simplifies the interactions 

between the LSTMs outputs. Hidden size was varied while learning rate was kept constant at 

0.001 and number of epochs was kept constant at 5. 

 

 

Figure 3: Hidden unit tuning 

 

Variation over hidden size shows that for SQuAD EM, the optimal hidden size is 100 while for 

SQuAD F1, the optimal hidden size is 50. Here, the location based F1 and EM scores both favor a 

hidden size of 100 and, with that added information, a hidden size of 100 was selected for the final 

model. Since the bulk of the computational time comes from training hidden variables, increasing 

the hidden size has a significant effect on computation time as shown below. 

 

 

Figure 4 Effect of hidden size on computation time 
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While the relationship between hidden size and computational time is linear, it was determined 

that the computations were still fast enough at the optimal size 100 hidden unit that the increased 

computational time was not a major setback. 

 

5 Results  

 
5 .1  Qua nt i ta t iv e  

 

A tuned Length Prediction model training on 8 epochs was used as the final model for this paper. 

When applied to a previously unseen testing dataset, this model produces a SQuAD F1 score of 

33% and a SQuAD F1 score of 19% (location based scores were unavailable on the unseen 

dataset). This is significantly lower than the scores that were being seen during validation testing. 

This discrepancy is likely due to the small size of the validation dataset that was used to select 

model architectures and tune hyperparameters leading to overfitting in the design of the model and 

overconfidence in the model’s performance. 

 

5 . 2  Qua l i ta t iv e  

Answers produced by this model tended to be very short. Most of the actual answers to the questions 
asked are short as well but that does not necessarily mean the model is learning to have shorter 
answers because short answers are common in the dataset. Having shorter predicted answers 
significantly reduces the number of false positives which leads to better F1 scores. Theoretically, 
this should be somewhat balanced by an increase in false negatives but there is no assurance of that. 

The model seems to be most effective at answering questions where the answer is a single number 
such as a year. This is likely because saying what year something happened in and asking what year 
something happened in is a fairly common kind of question to ask and the model saw many example 
of it during training time.  

The model struggles a lot when several parts of the context are highly related to the question. The 
model is able to tell that the different parts are good places to look because they are highly relevant 
to the question, but has a hard time distinguishing between them due to the limited nature of the 
attention model beyond simple word similarity. 
 

6 Conclusions 

 
6 .1  S ig n i f i ca nce  o f  re su l t s  

The scores achieved by this model are far from state of the art, which is around 80% on F1 and 75% 
on EM. They do, however, represent a large improvement over random guessing and demonstrate 
that there is some learning occurring. With further work, these results could be improved upon 
significantly, particularly with continued use of the location based EM and F1 scores. 

 

6 . 2  Future  w o rk  

As discussed in 5.2, the limited nature of the attention model used here limits the effectiveness 
of the question answering model. A more advanced attention structure such as co-attention or 
making multiple passes of attention over the context are just two of several more advanced 
attention mechanisms that could extend this work.  

Many of the tests described in this paper were done on models that only had one epoch to 
train. Although time constraints made this necessary for this paper, training models for longer 
could provide more helpful insight as to which models are worth pursuing more.  
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