
Implementation and Optimization of Differentiable Neural Computers

Carol Hsin
Graduate Student in Computational & Mathematical Engineering

Stanford University
cshsin[at]stanford.edu

Abstract

We implemented and optimized Differentiable Neural
Computers (DNCs) as described in the Oct. 2016 DNC pa-
per [1] on the bAbI dataset [25] and on copy tasks that were
described in the Neural Turning Machine paper [12]. This
paper will give the reader a better understanding of this new
and promising architecture through the documentation of the
approach in our DNC implementation and our experience of
the challenges of optimizing DNCs. Given how recently the
DNC paper has come out, other than the original paper, there
were no such explanation, implementation and experimenta-
tion of the same level of detail as this project has produced,
which is why this project will be useful for others who want to
experiment with DNCs since this project successfully trained
a high performing DNC on the copy task while our DNC per-
formance on the bAbI dataset was better than or equal to our
LSTM baseline.

1. Introduction

One of the main challenges with LSTMs/GRUs is that
they have difficulty learning long-term dependencies due to
having to store their memories in hidden units that are essen-
tially compressed, weight-selected input sequences. Hence,
the excitement when DeepMind released a paper this Octo-
ber documenting their results on a new deep learning archi-
tecture, dubbed the Differentiable Neural Computer (DNCs),
with read and write/erase access to an external memory ma-
trix, thus allowing the model to learn over much longer time
sequences than current LSTMs models.

In this paper, we first give a brief overview of how the
DNC fits into the deep learning historical framework since
we view DNCs as RNNs the way LSTMs are RNNs, as ex-
plained in Sec. 3. The rest of the paper focuses on the imple-
mentation and optimization of DNCs, which is essentially an
unconstrained, non-convex optimization problem for which
the KKT stationarity condition must hold for local optima
(given that vanishing gradients is essentially not a problem
for DNCs). A basic machine learning and linear algebra
background has been assumed, so common functions and
concepts are used without introduction with some explained
in the appendix in Sec. 6.

We discovered that understanding and implementing a
correct DNC is a non-trivial process as documented in Sec.
3. We also discovered that the DNCs are difficult to train,
take a long time to converge and are prone to over-fitting
and instability throughout the learning process, which were
the same challenges researchers have experienced in training
NTMs, which are the DNC’s direct predecessors [27]. Due to
the computational cost in both memory and time of training
DNCs, we were not able to train a DNC on the full joint bAbI
tasks, but on a joint subset of tasks that would be trainable
within a reasonable time frame (3 days instead of weeks) as
explained in Sec. 4.2. The DNC model was successful at per-
forming better than or equal to the LSTM baseline on these
tasks. We also ran experiments on the copy task described in
[12], of which the results were highly successful and are doc-
umented in the appendix in Sec. 6.1 since this paper coult not
fit all of the copy task experimentations and visualizations in
addition to discussing the approach (which also served as a
background on the theory of DNCs in addition to document-
ing our implementation process) and the full bAbI experi-
ments, since even some of the bAbI plots and figures had to
be placed in the appendix. We want to emphasize that the
reader should consider the copy task section in the appendix
as a continuation of the paper (even though it was placed in
the appendix to save space) since given the simplicity and
low RAM requirements of the copy task, more visualizations
using Tensorboard was possible, so Sec. 6.1 contains many
plots that can help the reader better understand DNCs, such
as the visualization of DNC memory matrices in Fig. 10.

We implemented the DNC with much unit-testing in
Python using Tensorflow 1.0. The experiments were on a
desktop CPU and GPU, and an Azure VM with one GPU.

2. Background/related work

While neural networks (NNs) have a long history [20],
they have mainly recently gained popularity due to the recent
availability of large datasets and massively parallel comput-
ing power, usually in the form of GPUs, having created an
environment that allowed the training of deeper and more
complex architectures in a reasonable time frame. As such,
deep learning techniques have received widespread attention
by outperforming alternative methods (e.g. kernel machines
and HMMs) on benchmark problems first in computer vi-

1

sion [16] and speech recognition [8] [11], and now in natu-
ral languge processing (NLP). The later by outperforming on
tasks including dependency parsing [4] [2], sentiment anal-
ysis [21] and machine translation [15]. Deep learning tech-
niques have also performed well against benchmarks in tasks
that combine computer vision and NLP, such as in image-
captioning [24] and lip-reading [7]. With these successes,
there seems to be a shift from traditional algorithms using
human engineered features and represenations to deep learn-
ing algorithms that learn the representations from raw inputs
(pixels, characters) to produce the desired output (class, se-
quence). In the case of NLP, much of the improvements
come from the sequence modeling capabilities of recurrent
NNs (RNNs) [10] [23], with their ability to model long-term
dependencies improved by using a gated activation function,
such as in the long short-term memory (LSTM) [14] and
gated-feedback unit (GRU) [5] [6] RNN architectures.

The RNN model extends conventional feedforward neu-
ral networks (FNNs) by reusing the weights at each time
step (thus reducing the number of parameters to train) and
conditioning the output on all previous words by a hid-
den “memory” state (thus “remembering” the past). In an
RNN, each input is a sequence (x1, . . . ,xt, . . . ,xT) of vec-
tors xt ∈ RX and each output is the prediction sequence
(ŷ1, . . . , ŷt, . . . , ŷT) of vectors ŷt ∈ RY , usually made into
a probability distribution using the softmax function. The
hidden state ht ∈ RH is updated at each time step as a func-
tion of a linear combination of the input xt and the previous
hidden state ht−1. Below, f(·) is usually a smooth, bounded
function such as the logistic sigmoid σ(·) or hyperbolic tan-
gent tanh(·) functions

ht = f

(
W

[
xt
ht−1

])
ŷt = softmax(Uht)

Theoretically, RNNs can capture any long-term depen-
dencies in arbitrary input sequences, but in practice, training
an RNN to do so is difficult since the gradients tend to van-
ish (to zero) or explode (to NaN, though solved by clipped
gradients) [18] [13] [14]. The LSTM and GRU RNN mod-
els both address this by using gating units to control the flow
of information into and out of the memories; the LSTM, in
particular, have dedicated memory cells and is the baseline
architecture used in our experiments. There are many LSTM
formulations and this project uses the variant from [1] with-
out the multiple layers:

it = σ(Wi[xt;ht−1] + bi)

ft = σ(Wf [xt;ht−1] + bf)

st = ft ◦ st−1 + it ◦ tanh(Ws[xt;ht−1] + bs)

ot = σ(Wo[xt;ht−1] + bo)

ht = ot ◦ tanh(st)

where it, ft, st and ot are the input gate, forget gate, state
and output gate vectors, respectively, and theW ’s and b’s are
the weight matrices and biases to be learned. Note that [1]
calls the memory cell (or state) st instead of the ct generally

used in literature [5] [6] [11] since [1] uses the letter c to
denote content vectors in the DNC equations, see Sec. 3.3.1.

With the LSTM and GRU models, longer-term dependen-
cies can be learned, but in practice, these models have limits
on how long memories can persist, which become relevant
in tasks such as question answering (QA) where the relevant
information for an answer could be at the very start of the in-
put sequence, which could consist of the vectorized words of
several paragraphs [19]. This is the motivation for fully dif-
ferentiable (thus trainable by gradient descent) models that
contain a long-term, relatively isolated memory component
that the model can learn to store inputs to and read from
when computing the predicted output. Such memory-based
models include Neural Turing Machines [12], Memory Net-
works (MemNets and MemN2Ns) [26] [22], Dynamic Mem-
ory Networks (DMN) [17] and Differentiable Neural Com-
puters (DNCs) [1], which can be viewed as a type of NTM
since they were designed by the same researchers. Mem-
Nets and DMNs are based on using multiple RNNs (LSTM-
s/GRUs) as modules, such separate RNN modules for input
and output processing as in [23]. The DMN uses a GRU as
the memory component as opposed to the addressable mem-
ory in MemNets/MemN2Ns, NTMs and DNCs. While Mem-
Nets/MemN2Ns have primarily been tested on NLP task,
NTMs were tested mainly on algorithmic tasks, such as copy,
recall and sort, while DNCs were tested a wider variety of
tasks–achieving high performance in NLP tasks on the bAbI
dataset [25], algorithmic tasks such as computing shortest
path on graphs and a reinforcement learning task on a block
puzzle game.

Thus, DNCs are powerful models that have a long-term
memory isolated from computation, which RNNs/LSTMs
lack, and have the potential to replicate the capabilities of
a modern day computer while being fully differentiable and
thus trainable using conventional gradient-based methods,
which is why they are the main topic of interest of this
project.

3. Approach: DNC overview & implementation

We implemented the DNC by inheriting from the Ten-
sorflow RNNCell interface, which is an abstract object rep-
resenting an RNN layer, even though it is called a “cell”.
This implementation approach takes advantage of Tensor-
flow’s built-in unraveling capabilities so all that is needed
is to program the DNC logic in (output, new state) =
self. call (inputs, state), in addition to the other, more
trivial, required functions. As shown in Fig. 1, this project
organizes the main DNC logic into three main module,
shown in grey boxes which contain the in which section they
are described.

3.1. DNC utility functions

Most of the DNC utility functions in Sec. 6.2.2 were easy
to implement or already provided in Tensorflow. Others were
implemented based on recognizing how they could be vec-
torized, such as for the content similarity based weighting

2

Figure 1: Our approach to implementing the DNC.

C(M ,k, β), which results in a probability distribution vec-
tor, i.e. in SN . The equation in the original paper was written
using cosine similarity D(·, ·) as

C(M ,k, β)[i] =
exp{D(k,M [i, ·])β}∑
j exp{D(k,M [i, ·])β}

∀i = [1 : N]

but it could be vectorized and implemented as

z = M̂k̂ C(M ,k, β) = softmax(βz)

where M̂ is M with `2-normalized rows and k̂ is `2-
normalized k. Notice that normalization (used in the cosine
similarity function Sec. 6.2.2) will result in NaN errors due
to division by zero since the memory matrixM is initialized
to zero. This could be solve by adding a factor of ε = 1e− 8
to the denominator or inserting a condition to ignore the com-
putation if the denominator was zero, both were implemented
before the discovery of Tensorflow’s built-in normalize func-
tion, which was the route taken in the end.

3.2. DNC NN Controller

We first concatenate the input vector of the current time
step xt and the read vectors from the previous time step
r1t−1, . . . , r

R
t−1 to form the NN controller input

χt = [xt; r
1
t−1; · · · ; rRt−1]

which is then fed into the NN cell of the NN controller,
where cell can be an LSTM or a FNN, which was coded us-
ing Tensorflow’s default cell functions with the mathematical
definitions in Sec. 6.2.4.

For consistency with the LSTM, call ht the output of the
NN cell at time step t, then the final NN controller’s output
is a matrix product with ht:[

ξt
νt

]
= Whht

where Wh is among the weights θ learned by the gradient
descent. Thus, if we let N refer to the NN controller, then
we can write the NN controller as:

(ξt,νt) = N ([χ1; · · · ; χt]; θ)

where [χ1; · · · ; χt] indicates dependence on previous el-
ements of the current sequence. In this project, after the
vector concatenation, the controller is implemented using

Tensorflow’s default functions rnn.BasicLSTMCell and
layers.dense for the NN cell, then a final weight matrix
multiply and vector slicing to get the two vectors ξt and νt.

As shown in Sec. 6.2.5, the interface vector ξt is split into
the interface parameters, some of which were processed to
the desired range by the utility functions in Sec. 6.2.2. The
interface parameters are then used in the memory updates
as explained in Sec. 3.3. The other NN Controller output,
νt is used to compute the final DNC output yt as shown
in Sec. 6.2.7 in a linear combination with the read vectors
[r1t ; . . . ; rRt] from the memory as shown in Sec. 3.3.1.

3.3. DNC memory module implementation

The interface parameters are used to update the mem-
ory matrix (denoted as M ∈ RN×W where N is the num-
ber of memory locations, aka “cells”, and W is the mem-
ory word size, aka “cell” size) and compute intermediate
memory-computation related vectors that are used to com-
pute the memory read vectors [rt; · · · ; rRt] that are used
to both compute the output of the current time step yt and
to feed as input into the NN controller as part of χt+1 in the
next time step.

In this project, the memory interactions are organized
based on how these interactions can be divided into writ-
ing to memory and reading from memory, and then further
subdivided based on content-based address weightings and
what this project calls “history”-based address weightings,
since they are computed based on previous read and write
weightings. We use this notation after observing similarities
between content vs “history” focusing in the DNC equations
and content vs location focusing in the NTMs equations [12].

To make this part of the paper more clear, we created a
diagram of this project’s organization of the DNC memory
implementation shown in Fig. 2. Hexagons mark the inter-
face variables computed from the NN controller. Blue dia-
monds are variables that are required to be kept and updated
each time step. Dashed circles imply intermediate computed
values that are merely consumed and forgotten. The vari-
ables used in the figures are the same as defined in [1], with
the DNC glossary in [1] reproduced in Sec. 6.2.1 for conve-
nience, as are the memory equations from the [1], which can
be viewed in Sec. 6.2.6.

Observe from Fig. 2 that the DNC is structurally simi-
lar to an LSTM except the DNC has multiple vector-storing
memory cells (vs just one in an LSTM) and the DNC has ad-
dressing mechanisms to choose from which memory cell(s)
to write and read.

3.3.1 Content-based write and read weightings

An advantage of memory cells with vector values is to allow
for a content-based addressing, or soft attention, mechanism
that can select a memory cell based on the similarity (cosine
for the DNC and NTM) of its contents to a specified key k
[3] [9]. Recall that the DNC uses the same content-based fo-
cusing mechanism used in NTMs [12]; the main changes be-
tween the two papers were in notation, which in the DNC is

3

Figure 2: Diagram of our approach to organizing and implementing the DNC memory module.

c = C(M ,k, β) as defined in Sec. 6.2.2 and implemented by
this project as softmax over the matrix product of the normed
tensors (M and k) scaled by β ∈ [0,∞) as shown in Sec.
3.1. As stated in Sec. 3.1, the result c can be viewed as
a probability distribution over the rows of M based on the
similarity of each row (cell) to k as weighted by β. Thus, in
Fig. 2, the box Content-based weighting for write is

cwt = C(Mt−1,k
w
t , β

w
t)

and the box Content-based weighting for read is

cr,it = C(Mt,k
r,i
t , β

r,i
t) ∀ i ∈ [1 : R]

From Fig. 2, observe that cwt , is computed first in order to
compute the final write weighting ww

t to update (erase and
write to) the memory, so Mt−1 ← Mt, the update shown
in the dashed lines. Then each cr,it is used to compute each
final read weightingww

r,i used to produce each read vector rit
from the updated memory,Mt.

3.3.2 History-based write weighting

In Fig. 2, the box History-based write weighting is also k the
process dubbed dynamic memory allocation by [1]

ψt =

R∏
i=1

(1− f itw
r,i
t−1)

ut = (ut−1 +ww
t−1 − (ut−1 ◦ww

t−1)) ◦ψt
φt = SortIndicesAscending(ut)

at[φt[j]] = (1− ut[φt[j]])
j−1∏
i=1

ut[φt[j]]

As defined in Sec. 6.2.1, we have as inputs the R free gates
f it ∈ [0, 1] from the interface vector, the R previous time-
step read weightings wr,i

t−1 ∈ ∆N , the previous time-step
write weighting ww

t−1 ∈ ∆N and the previous time-step us-
age vector ut. The output is the allocation (“history”-based)
write weighting at ∈ ∆N , which will be convexly combined
with the content-based write weighting cwt for the final write
weighting ww

t . The intermediate variables are the memory
retention vector ψt ∈ [0, 1]N and indices φt ∈ NN of slots
sorted by usage.

The general idea behind these equations is to bias the
selection of memory cells (to erase and write to) as deter-
mined by at toward those that the DNC has recently read
from (ψt) and away from cells the DNC has recently writ-
ten to (ww

t−1). See that ψt will be lower for memory slots
that have been recently read, which can be analogous to in-
dicating that a memory has been “parsed” or “consumed”,
and if a high free gate, determined to be insignificant, so the
DNC can forget those memories and write new ones to those
slots; and the converse for slots with highψt, indicating they
should be retained (not erased). Intuitively, the usage vec-
tor ut tracks memory cells still being “used”, i.e. was used
(ut−1), been written to (ww

t−1) and deemed significant (by
ψt), so retained.

The only complication in the implementation was the sort-
ing and rearrangement. We sorted using Tensorflow’s top k,
which gives the indices along with a sorted tensor. Let ût
denote the sorted ut and ât be the at in arrangement by φt.
Then (-ût,φt) = top k(-ut, k = N) and ât is trivially com-
puted from ût. The main difficulty is in the rearrangement
since Tensorflow tensors are immutable, one cannot preallo-

4

cate a tensor and then index into it to change its value. Our
solution was to construct a permutation matrix by turning the
indices into one-hot vectors, so if we had ât = [a; b; c] with
φt = [2; 3; 1], then

at =

bc
a

 =

0 1 0
0 0 1
1 0 0

ab
c

 = P (φt)ât

where P (·) turns its vector input into a permutation matrix.
Note that this method may not be the most space efficient and
may have added to the RAM and computational time of the
DNC training process, but we could not think of a better and
cleaner way of implementing this.

3.3.3 Final write weighting and memory writes

In Fig. 2, the box Final write weighting is

ww
t = gwt [gat at + (1− gat)cwt]

Since gat ∈ [0, 1], observe that gat at + (1 − gat)cwt is a con-
vex combination of the “history”-based write weighting at
and the content-based weighting cwt , so if gat ≈ 1, then the
DNC ignores the content-based weightings and vice versa in
choosing which memory slots to erase/write. The write gate
gwt ∈ [0, 1] dictates whether to update at all, so if gwt ≈ 0,
then no slots will be erased/written. As shown in Fig. 2,
the write weighting ww

t is used to update the memory ma-
trix, compute the “history”-based read weightings and then
is kept as the “new” ww

t−1 for the next time-step.
The box Write to memory, which is

Mt = Mt−1 ◦ (E −ww
t e
>
t) +ww

t v
>
t

completes the writing portion of the memory module. The
erase vector et ∈ [0, 1]W and write vector vt ∈ RW were
unpacked from the interface vector, see Sec. 6.2.5 and
E={1}N×W , so the equation can be written without E as

Mt = Mt−1 −Mt−1 ◦ww
t e
>
t︸ ︷︷ ︸

erase

+ww
t v
>
t︸ ︷︷ ︸

write

so row j of ww
t e
>
t is the erase vector scaled by the write

weighting of memory cell j; similarly for ww
t v
>
t . Note that

the hadamard product withMt−1 isolates erasing from writ-
ing since without it, empty memory slots would get written
to by the erase instead of leaving a cleaner slot for the write.

These implementations are trivial, so not discussed.

3.3.4 History-based read weightings

Recall from Sec. 3.3.2 that the idea behind the history-based
write weighting was to bias the selection of memory cells (to
be erased/written to) toward those that were a combination
of being most recently read from, least recently written to, or
deemed inconsequential by the free gates. In contrast, the R
history-based read weightings select memory cells (to read
from) based on the order in which the cells were written to

in relation to the writing time of the cells read from in the
previous time-step, so the preference is for cells written to
right before (as measured by backward weightings bit ∈ ∆N)
or after (as measured by forward weightings f it ∈ ∆N) the
time at which the cells the DNC just read from were written
to, which is evident from the equations for the Fig. 2 box
History-based read weightings:

pt =

(
1−

N∑
i=1

ww
t [i]

)
pt−1 +ww

t

Lt[i, j] = (1−ww
t [i]−ww

t [j])Lt−1[i, j] +ww
t [i]pwt−1[j]

Lt[i, i] = 0 ∀ i ∈ [1 : N]

f it = Ltw
r,i
t−1

bit = L>t w
r,i
t−1

where the precedence weighting pt ∈ ∆N keeps track of
the degree each memory slot was most recently written to.
Observe that the DNC updates pt based on how much writing
occurred at the current time-step as measured by the current
write weighting ww

t ∈ ∆N , so if ww
t ≈ 0, then barely any

writing happened at this time-step, so pt ≈ pt−1, indicating
that the write history is carried over; and if 1>ww

t ≈ 1, the
previous precedence is nearly replaces, so pt ≈ ww

t .
Updating based on how much writing happened is also

built into the recursive equations for the temporal memory
link matrix Lt ∈ [0, 1]N , which tracks the order in which
memory locations were written to such that each row and
column are in ∆N , so 1>Lt ≤ 1

> and Lt1 ≤ 1 where ≤
is applied element-wise. Observe that ww

t [i]pwt−1[j] is the
amount written to memory location i at this time-step times
the extent location j was written to recently, so Lt[i, j] is the
extent memory slot i was written to just after memory slot j
was written to in the previous time-step. Further observe that
the more the DNC writes to either i or j, the more the DNC
updates Lt[i, j], so if not much was written to those slots at
the current time-step, the previous time-step links are mostly
carried over. Also observe that the link matrix recursion can
be vectorized as

L̂t =
[
E −ww

t 1
> − 1(ww

t)>
]
◦Lt−1 +ww

t (pwt−1)>

Lt = L̂t ◦ (E − I) removes self-links

where I is the usual identity matrix. Note that these equa-
tions are trvially implemented with Tensorflow broadcasting,
so there is no need to actually compute the two outer prod-
ucts of ww

t with 1.
As explained earlier, time goes forward from columns to

rows in the link matrix, so the equations for f it (propagating
forward once) and bit (propagating backward once) are intu-
itive, as are the implementations, so neither is discussed.

3.3.5 Final read weighting and memory reads

Similar to the write weighting ww
t , the ith read weighting

wr,i
t is a convex combination of the corresponding content-

based read weighting, cr,it , and the history based read weight-
ings, f it and bit, as evident from the equations for Fig. 2 box

5

Final read weighting

wr,i
t = πit[1]bit + πit[2]cr,it + πit[3]f it

where πit ∈ S3 is the read mode vector that governs the ex-
tent the DNC prioritizes reading from memory slots based on
the reverse order they were written (πit[1]), content similarity
(πit[2]) or the order they were written (πit[3]).

As seen in Fig. 2, the ith read weighting wr,i
t is then

passed to the Read from memory box

rit = M>
t w

r,i
t

thus, producing the ith read vector rit ∈ RW .
These implementations are trivial, so not discussed.

3.4. DNC final output

As show in Fig 1, these R read vectors are then concate-
nated to compute the final DNC output yt ∈ RY

yt = Wr

r
1
t
...
rRt

+ νt

as explained in Sec. 6.2.7. The concatenated R read vectors
are also concatenated with the next input xt+1 to produce
χt+1 to feed into the NN controller at the next time-step as
explained in Sec. 3.2.

These implementations are trivial, so not discussed.

4. Experiments and Results
As explained in Sec. 3, we implemented the DNC as

a Tensorflow RNNCell object, so the DNC can be used as
one would use Tensorflow’s BasicLSTMCell, which is also
an RNNCell, without needing to manually implement the se-
quence unrolling. This meant the code used to run a DNC
training session can be used to run a session for any RNNCell
object by switching the RNNCell object, i.e. from the DNC
to an LSTM, which was the baseline model used for all the
experiments in this project. Thus, in all the experiments, an
LSTM baseline model was first run, both as a reference for
the DNC loss curve and as further correctness verification of
the data processing and model training pipelines.

4.1. Copy experiments

At the start of the experimentation on the bAbI dataset, the
results were rather poor and chaotic, so to debug and further
verify that the DNC was correctly implemented, we decided
to experiment with achieving high performance on the sim-
pler copy tasks, which were described in both the DNC [1]
and NTM [12] papers. The smaller and easier to visualize
copy tasks allowed us to have enough RAM to visualize the
memory and temporal link matrices, which helped in the fix-
ing of bugs in the implementations. Since this project should
be focused primarily on NLP, the experimentation and results
from the copy tasks, which were all highly successful, are in
the appendix in Sec. 6.1 due to the page limits.

4.2. bAbI experiments

The original intent of this project was to reproduce the
bAbI results of [1], however, given the large and complex
dataset, even though we were using the GPU, training the
DNC on the full joint bAbI tasks was taking more than 15
hours complete even one epoch, which made the full 20 task
joint experiment inconceivable given the time frame and lim-
ited compute power. To understand the bottlenecks, we com-
puted statistics over the bAbI dataset as displayed in Fig. 17
and decided that some tasks were just too big, e.g. Task 3
the max input sequence lengthen of 1920, to be trained in a
reasonable time frame. Therefore, we selected the smaller-
sized tasks from the bAbI dataset, specifically the 6 tasks
1, 4, 9, 10, 11, 14, for the joint-training instead of the full 20
tasks.

For all of the experiments, unless otherwise specified, the
models were trained with a batch size of 16 using RMSPprop
with learning rate 1e-4 and momentum 0.9; and the DNC
settings were N = 256,W = 64, R = 4 with an LSTM
controller with H = 256. The baseline LSTM model had
the same H . The gradients were clipped by the global norm
with threshold 5.

4.2.1 Data and metrics

The bAbI tasks inputs consist of word sequences interspersed
with questions within self-contained “stories” and while the
datasets also included supporting facts that could be used
to strongly supervise the learning, we followed the DNC
paper’s settings and only considered the weakly supervised
setting. For each story k, we constructed input sequences
x(k) of one-hot vectors x(k)

t ∈ [0, 1]|V | where |V | is the
vocabulary size. We reserved a token “-” to be the sig-
nal that an answer is required and “*” to be the padding
for sequences that were shorter than the maximum sequence
length, which we call T . The target output vector consisted
of “*” for positions that do not require answers and the vec-
torized word answers for the positions with “-” in the in-
put sequence, so the maximum sequence length of x(k) is
also T and x(k)

t ∈ [0, 1]|V |. For each sequence, a mask
m(k) ∈ [0, 1]T such that m(k)[t] = 1{answer required at t}
was also computed and passed to the model with the input
and target outputs in order to ignore the irrelevant predicted
outputs at time-steps where no answers were required.

The loss was the average sotftmax cross entropy with log-
its loss, so the final output of both the DNC cell and the
LSTM cell was passed through the softmax function, so if
ht was the cell output, then ŷt = softmax(ht) as defined
in Sec. 6.2.2. Thus, the loss for a single prediction is

L =
1

T

T∑
t=1

mtL(yt, ŷt)

L(yt, ŷt) = −
|V |∑
i=1

yt[i] log(ŷt[i])

6

The accuracy is the average number of questions an-
swered exactly correct, so if a question has two words in the
answer, the model has to get both words in the right order to
have it marked correct.

4.2.2 Single tasks

Before expending the computational power to train the DNC
on the joint dataset, DNC models were trained separately on
single tasks both to verify the hyper-parameters were rea-
sonable and that the training pipeline was correctly imple-
mented. Task 1 and task 15 were chosen for these experi-
ments. For each of the tasks, the dev set was a randomly
chosen 10% of the training set reserved for tuning; this was
split ratio was also used for the joint training.

Figure 3: Plots showing the DNC overfits tiny datasets

(a) Task 1 DNC loss plots

(b) Task 15 DNC loss plots

DNC overfitted both datasets as shown in Fig. 19 and
Fig. 3, but the LSTM also overfits these datasets, see Fig. 18
in the appendix, so it may be that the models are too com-
plex for these smaller tasks. However, these experiments
were still useful since a common machine learning “sanity”
check is to ensure a model can overfit a tiny subset of the

full dataset. Since the full dataset is 1, 4, 9, 10, 11, 14, the
size and variety of the joint dataset may prevent over-fitting
in the full training step.

4.2.3 Joint task results

We trained two DNC models, each of which took over two
days on the GPU. We trained a DNC model using Adam with
learning rate 1e-3 instead of RMSProp and one using the set-
tings from the DNC paper [1], so with RMPSprop with learn-
ing rate 1e-4 and momemtum 0.9, clipping the gradients by
value to [−10, 10] instead of by global norm. However, we
kept the batchsize of 16 instead of 1, which was in [1]. An
LSTM baseline model was also trained. Please see the ap-
pendix Fig. 20 for the train and dev comparison plots for all
models. As can be seen in Fig. 4 and Fig. 5, the DNC does
slightly better than the LSTM in terms of loss and accuracy
(batch-averaged).

Figure 4: DNC vs LSTM joint-task trained models loss plots

Figure 5: DNC vs LSTM on joint tasks. L=loss, A=accuracy,
A∗=accuracy on one batch

Train L Dev L Train A∗ Dev A
DNC 0.18239 0.98909 0.9091 0.68614

LSTM 0.30888 0.98909 0.8056 0.73753

The joint-trained DNC and the LSTM models were then
ran on the bAbI test sets for Tasks 1, 4, 9, 10, 11, 14 and the
results as displayed in Fig. 5 show that our DNC model
performs better than or equal to our LSTM baseline on all
the tasks. The mean accuracy ranges as defined by the stan-
dard deviations from the DNC paper [1] for the DNC and the
LSTM were also provided in addition to the weakly super-

7

Figure 6: DNC vs LSTM joint-task trained models per task accuracy comparision on the test set

Task our DNC our LSTM [1] DNC range [1] LSTM range [25] LSTM
1:single-supporting-fact 0.59196 0.48744 [1.00,0.78] [0.67,0.53] 0.50
4:two-arg-relations 0.99900 0.98699 [1.00,0.99] [1.00,0.99] 0.61
9:simple-negation 0.82010 0.80804 [1.00,0.84] [0.86,0.83] 0.64
10:indefinite-knowledge 0.70251 0.68945 [1.00,0.79] [0.73,0.70] 0.44
11:basic-coreference 0.83015 0.67136 [1.00,0.91] [0.91,0.84] 0.72
14:single-supporting-fact 0.47236 0.44623 [0.96,0.81] [0.45,0.43] 0.27

vised LSTM model results from the bAbI paper [25] for the
tasks the experiment was run.

Recall that in all our bAbI experiments, we followed the
DNC paper’s settings in that all the models were weakly su-
pervised as the bAbI dataset paper [25] calls it, in that the
models do not use the supporting facts to answer the ques-
tions in the bAbI tasks, so the models received no data other
than the word sequences. The MemNN models that achieved
near perfect accuracy on the bAbI dataset were using what
[25] termed strong supervision and no results on the weakly
supervised task was provided, so we could not use their num-
bers.

Observe that while our LSTM baseline had higher perfor-
mance than the LSTM baseline from the bAbI paper [25],
quite a few were not in the range of the mean and standard
deviation of the DNC paper results [1] and the same held for
our DNC model. We believe this is because we only had
time to train our models for about 30 epochs while [1] had
the computing resources to train all of their models to com-
pletion in addition to have 20 randomized models per archi-
tecture type. The comparisons may also be difficult since
our models were only jointly trained on 6 out of the 20 bAbI
tasks while the models in the literature were joint-trained on
all 20. As stated earlier, the we had tried to train the DNC
on all 20, but after running for over 15 hours, it had yet to
complete even one epoch, let alone the low bar of 30 epochs
we were aiming for

5. Conclusion

Thus, we have implemented DNCs and conducted exper-
iments with them on the copy and bAbI tasks. The copy
tasks were highly successful and allowed for the visualiza-
tion of the DNC throughout the learning process, thus also
serving as a certificate of the correctness of the DNC imple-
mentation. The bAbI tasks were more complex and therefore
required more computational power than we current have,
which was why a scaled down experiment was conducted
that consist of the joint-training on 6 instead of the full 20
bAbI tasks, each chosen for being smaller as shown in Fig.
17 and therefore faster to train.

Given more time and computing power, we would have
liked to train DNC models on the full 20 tasks and be able to
iterate over the models to get better hyper-parameters. Given
more RAM, we would have liked to produce the visualiza-

tions of the DNC learning process the way we did for the
smaller copy tasks as shown in Sec 6.1. We would also have
liked to write the code to visualize the temporal link matrix
as the DNC passes through one input sequence to get a bet-
ter understanding of the mechanics of the DNC. We would
have also liked to do a mathematical exercise on the link ma-
trix equations, kind of like in Sec. 6.3, to better understand
the mechanics of its formulation rather than just the intuition.
We would also have liked to do more experiments on the sin-
gle tasks, such the the dropout experiment in Sec. 6.4.1.

In conclusion, we were very thorough in our documen-
tation of our approach to the understanding and implementa-
tion of DNCs, along with the challenges we faced in optimiz-
ing them. We hope this project will be useful for others in-
terested in DNCs and/or machine learning architectures with
external memory.

References
[1] G. W. Alex Graves. Hybrid computing using a neural network

with dynamic external memory. Nature, 2016.
[2] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta,

K. Ganchev, S. Petrov, and M. Collins. Globally normalized
transition-based neural networks. CoRR, abs/1603.06042,
2016.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate. CoRR,
abs/1409.0473, 2014.

[4] D. Chen and C. D. Manning. A fast and accurate dependency
parser using neural networks. In Empirical Methods in Natu-
ral Language Processing (EMNLP), 2014.

[5] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On
the properties of neural machine translation: Encoder-decoder
approaches. CoRR, abs/1409.1259, 2014.

[6] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical eval-
uation of gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555, 2014.

[7] J. S. Chung, A. W. Senior, O. Vinyals, and A. Zisserman. Lip
reading sentences in the wild. CoRR, abs/1611.05358, 2016.

[8] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 20(1):30–42, 2012.

[9] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.
org.

[10] A. Graves. Generating sequences with recurrent neural net-
works. CoRR, abs/1308.0850, 2013.

8

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[11] A. Graves, A. Mohamed, and G. E. Hinton. Speech
recognition with deep recurrent neural networks. CoRR,
abs/1303.5778, 2013.

[12] A. Graves, G. Wayne, and I. Danihelka. Neural turing ma-
chines. CoRR, abs/1410.5401, 2014.

[13] S. Hochreiter, Y. Bengio, and P. Frasconi. Gradient flow in
recurrent nets: the difficulty of learning long-term dependen-
cies. In J. Kolen and S. Kremer, editors, Field Guide to Dy-
namical Recurrent Networks. IEEE Press, 2001.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, Nov. 1997.

[15] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu,
Z. Chen, N. Thorat, F. B. Viégas, M. Wattenberg, G. Cor-
rado, M. Hughes, and J. Dean. Google’s multilingual neural
machine translation system: Enabling zero-shot translation.
CoRR, abs/1611.04558, 2016.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[17] A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce,
P. Ondruska, I. Gulrajani, and R. Socher. Ask me anything:
Dynamic memory networks for natural language processing.
CoRR, abs/1506.07285, 2015.

[18] R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the
exploding gradient problem. CoRR, abs/1211.5063, 2012.

[19] B. Richardson and Renshaw. Mctest: A challenge dataset for
the open-domain machine comprehension of text, 2013.

[20] J. Schmidhuber. Deep learning in neural networks: An
overview. CoRR, abs/1404.7828, 2014.

[21] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning,
A. Y. Ng, and C. P. Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. In EMNLP, 2013.

[22] S. Sukhbaatar, a. szlam, J. Weston, and R. Fergus. End-to-end
memory networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 2440–2448. Curran
Associates, Inc., 2015.

[23] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. CoRR, abs/1409.3215, 2014.

[24] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and
tell: A neural image caption generator. CoRR, abs/1411.4555,
2014.

[25] J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards ai-
complete question answering: A set of prerequisite toy tasks.
CoRR, abs/1502.05698, 2015.

[26] J. Weston, S. Chopra, and A. Bordes. Memory networks.
CoRR, abs/1410.3916, 2014.

[27] W. Zhang, Y. Yu, and B. Zhou. Structured memory for neural
turing machines. CoRR, abs/1510.03931, 2015.

6. Appendix
6.1. Copy task

Since DNCs are the descendents of NTMs, they should
have the same capabilities as NTMs. In the NTM paper, the
researchers came up with a copy task where given inputs of
random bit-vector sequences such that the sequence lengths
varied between 2 and 20, the NTMs were tasked with out-
putting a copy of the input after it received the entire input

sequence and a delimited flag indicating the input has ended
and to start the copy [12]. The trained NTMs were then given
inputs of sequence length larger than the sequences on which
they was trained, such as length 30, to see if the NTMs can
generalize the copy algorithm, which is an experiment that
was not present in the DNC paper [1] even though the re-
searchers used the copy task to verify memory allocation and
the speed of sparse link matrices. We figure copy generaliza-
tion would be an interesting experiment for the DNC. In ad-
dition, the structural simplicity of the copy task also allowed
for verification of the DNC implementation on a tiny copy
task where the sequence lengths were fixed to be 3.

Throughout these experiments, an LSTM served as the
baseline model with hidden layer size H = 100. The DNC
models had a FNN as the LSTM as the NN controller as op-
posed to a LSTM so the DNC could only store the memories
in its memory matrix. All models were trained using RMSP-
prop with learning rate 1e-5 and momentum 0.9.

6.1.1 Data

We used settings from both the DNC paper [1] and the NTM
paper [12] since the NTM paper had more extensive copy
task experiments. As in the papers, the inputs consist of a
sequence of length 6 random binary vectors, so the domain is
{0, 1}6, but since the last bit is reserved for the delimiter flag,
d, which tells the model to reproduce (“predict”) the input
sequence, the model actually receives bit vectors in {0, 1}7.
Call T the maximum sequence length, thus the model is fed
inputs of sequence length 2T+1, which is the same as the
target output sequence length as depicted in Fig. 7.

Figure 7: Example of T = 3 and b = 6 copy data where
x4 is the delimiter, so x1:3[1 : 6] is the relevant input and
y5:7[1 : 6] is the relevant output.

(a) Input sequence x (b) Target output sequence y

Since the experiments include variable in addition to fixed
sequence lengths, call Tk the sequence length of input se-
quence k, then the input is a (2T+1)-length sequence

x(k) = [x1; . . . ; xTk
; d; 0; . . . ; 0]

and the target output is a sequence of the same length

y(k) = [0; . . . ; 0; x1; . . . ; xTk
; 0; . . . ; 0]

which is better depicted in Fig. 8. In both fixed and variable
sequence length cases, a mask vectorm(k) ∈ {0, 1}2T+1 such

9

that m(k)
t = 1{y(k)

t is relevant} is also included to be used
in the loss and accuracy functions.

Figure 8: Example of T = 20 and Tk = 5 copy data where
x6 is the delimiter flag.

(a) Input sequence x

(b) Target output sequence y

6.1.2 Loss function and metrics

We trained the model on sigmoid cross entropy loss where
irrelevant outputs are masked, so the loss for prediction
[ŷ1; . . . ; ŷ2T+1], target [y1; . . . ; y2T+1] with maskm is

L =
1

1>m

2T+1∑
t=1

mtL(ŷt,yt)

L(ŷt,yt) = −1

6

2T+1∑
i=1

yt[i] log ŷt[i]+(1−yt[i]) log(1−ŷt[i])

The accuracy of a prediction [ŷ1; . . . ; ŷ2T+1] is calcu-
lated based on the average number of bit matches with the
target output [y1; . . . ; y2T+1] using the mask m to ignore
irrelevant portions

A =
1

1>m

2T+1∑
t=1

mt
1

6

6∑
i=1

1{ŷt[i] = yt[i]}

6.1.3 Model checks and optimization on tiny task

Due to the expensive computational requirements of training
DNCs, as a further correctness check, we trained the DNC
with inputs of a fixed sequence length of T = 3 rather than
the full task of inputs with variable sequence length between
2 and 20. We used this tinier problem as a sanity check on
the DNC since it should be able to get to zero loss on this
problem very quickly and the tiny task was also used for
hyper-parameter tuning along with testing out Tensorboard
capabilities. For the tiny copy task, the DNC settings were
N = 10, W = 12, R = 1.

As observed from the loss plots in Fig. 9, the DNC with
a 1-layer FNN controller reached zero loss by step 6k its
loss curves closely follows the LSTM baseline, but a DNC
with a 2-layer FNN controller reached zero loss by step 3k.
Since it is good practice to sanity check the start loss, observe
that since this is basically binary classification, the start loss
should be − log(0.5) ' 0.7, which is true for all models.

Figure 9: DNC with 2-layer FNN converges much faster than
the LSTM or 1-layer FNN DNC.

Figure 10: Examples of memory matrices throughout the
training of the DNC on the fixed sequence length of T = 3.

See Fig. 10 for images of the memory matrix produced
with Tensorboard. Note that these memory matrices are not
in any order, they were just chosen to show that the DNC is
writing to specific memory cells (i.e. rows ofM) and seems
to be erasing others (see the “ghost” rows).

Figure 11: Three examples of prefect prediction results for
the fully trained DNC with fixed sequence length T = 3, so
only ŷ5:7[1 : 6] is relevant.

See Fig. 11 for examples of sample predictions and tar-
gets produced with Tensorboard. Note that only the last three
columns of each prediction sequence is relevant since DNC
was receiving an input of sequence length three followed by
a delimiter for the first four time-steps.

Recall that since training deep learning models is equiva-
lent to optimizing a non-convex unconstrained optimization
problem, another way to check convergence (granted that we
are not experiencing vanishing gradients) is to check that the
gradient norms converges to zero, which in the KKT condi-
tions indicate convergence to a local optima. See Fig. 12
for the Tensorboard plot checking that the models have con-
verged. Observe that the DNC models show convergence,

10

Figure 12: The gradient norms vs iteration for all three models for copy task on T = 3

but are more unstable with gradient spikes (over 2000 for the
DNC) that need to be clipped to prevent the learning process
from getting side-tracked by the plateaus described in [18]
[13].

6.1.4 Full copy task

For the full copy task, the DNC settings wereN = 20, W =
12, R = 1. Tensorboard was used to display images of the
predictions and targets throughout the DNC learning process,
which is shown in Fig. 14. For the same number of itera-
tions, the learning process for the DNC took 8 hours and the
LSTM took half an hour to training on the CPU (GPU was
already being used) using RMSPprop with learning rate 1e-5
and momentum 0.9.

Figure 13: DNC vs LSTM loss plots for seq lens [2,20]

The loss plots in Fig 13 show that the DNC learns faster
and better than the LSTM, but also that the DNC learning
process is very unstable as there tends to be huge spikes in
the loss plots even though the gradients have been clipped by
the global norm, as observed in Fig. 15 where the norms do

Figure 14: Sampling of prediction results from DNC
throughout training on varied seq. lens in [2,20].

(a) Early-training

(b) Mid-training

(c) Late-training

not surpass 5.

Figure 15: The gradient norms vs iteration for the 2-layer
DNC trained on the variable length copy task

Figure 16: DNC vs LSTM results

Model Loss on Tk ∈ [2, 20] Acc on Tk = 30
LSTM 0.3248 0.66700
DNC 4.0595e-6 ≈ 0 0.9709

To test how well the models generalize the copy task, they

11

were tested on a batch of 100 input sequences where the se-
quence length was T = 30. The results in Fig. 16 show that
the DNC can better generalize the copy task than the LSTM,
which was a confirmation of our hypothesis.

6.2. DNC equations and definitions from [1]

6.2.1 Glossary

∆N = {α ∈ RN | αi ∈ [0, 1],1>α ≤ 1}
SN = {α ∈ RN | αi ∈ [0, 1],1>α = 1}

6.2.2 Definitions

σ(x) =
1

1 + e−x
∈ [0, 1]

oneplus(x) = 1 + log(1 + ex) ∈ [1,∞)

softmax(x)i =
exi∑|x|
j=1 e

xj

∈ [0, 1]

C(M ,k, β)[i] =
exp{D(k,M [i, ·])β}∑
j exp{D(k,M [i, ·])β}

∈ SN

D(u,v) =
u · v
|u| |v|

cosine similarity

(A ◦B)[i, j] = A[i, j]B[i, j] hadamard product
(x ◦ y)[i, j] = x[i]y[i] hadamard product

6.2.3 Initial Conditions

u0 = 0; p0 = 0; L0 = 0; Lt[i, i] = 0, ∀ i

6.2.4 Controller Update

χt = [xt; r
1
t−1; · · · ; rRt−1]

(ξt,νt) = N ([χ1; · · · ; χt]; θ)

where N (·) is the neural network based controller that con-
sists of a cell that in this project was either a FNN or LSTM
that outputs ht as a function of the input χt, and ht−1 if an
LSTM. So if cell is a FNN, it has the form:

ht = relu(Wχχt + bχ)

otherwise, cell is the LSTM of the form:

it = σ(Wi[χt;ht−1] + bi)

ft = σ(Wf [χt;ht−1] + bf)

st = ft ◦ st−1 + it ◦ tanh(Ws[χt;ht−1] + bs)

ot = σ(Wo[χt;ht−1] + bo)

ht = ot ◦ tanh(st)

A linear operation is used to get (ξt,νt):[
ξt
νt

]
= Whht

6.2.5 Interface (ξt) unpacking

Split the vector ξt ∈ R(W ·R)+3W+5R+3 into the following
components, then use the utility functions in Sec. 6.2.2 to
preprocess some of the components.

ξt =



kr,1t
...

kr,Rt
β̂r,1t

...
β̂r,Rt
kwt
β̂wt
êt
vt
f̂1t
...
f̂Rt
ĝat
ĝwt
π̂1
t
...
π̂Rt



 read keys kr,it ∈ RW

 read strengths βr,it = oneplus(β̂r,it) ∈ R

} write key kwt ∈ RW

} write strength βwt = oneplus(β̂wt) ∈ R
} erase vector et = σ(êt) ∈ RW
} write vector vt ∈ RW free gates f it = σ(f̂ it) ∈ R

} allocation gate gat = σ(ĝat) ∈ R
} write gate gwt = σ(ĝwt) ∈ R read modes πit = softmax(π̂it) ∈ R3

6.2.6 Memory Updates

The original paper equations:

12

ψt =

R∏
i=1

(1− f itw
r,i
t−1)

ut = (ut−1 +ww
t−1 − (ut−1 ◦ww

t−1)) ◦ψt
φt = SortIndicesAscending(ut)

at[φt[j]] = (1− ut[φt[j]])
j−1∏
i=1

ut[φt[j]]

cwt = C(Mt−1,k
w
t , β

w
t)

ww
t = gwt [gat at + (1− gat)cwt]

Mt = Mt−1 ◦ (E −ww
t e
>
t) +ww

t v
>
t

pt =

(
1−

N∑
i=1

ww
t [i]

)
pt−1 +ww

t

Lt[i, j] = (1−ww
t [i]−ww

t [j])Lt−1[i, j] +ww
t [i]pwt−1[j]

f it = Ltw
r,i
t−1

bit = L>t w
r,i
t−1

cr,it = C(Mt,k
r,i
t , β

r,i
t)

wr,i
t = πit[1]bit + πit[2]cr,it + πit[3]f it

rit = M>
t w

r,i
t

6.2.7 Output

The final output is a linear combination of the vector νt from
the controller and the concatenated read vectors r1t , . . . , r

R
t .

yt = Wr

r
1
t
...
rRt

+ νt

6.3. DNC mathematical exercise

In most of the DNC equations, why the authors of the
DNC paper [1] formulated the expressions they way they
did was intuitive, but some of the equations were not quite
so. In our understanding of the DNC equations, we went
through some proofs to ensure we understood the “why” be-
hind the mathematical expressions, particularly for the usage
vector equation, which, through our mathematical exercise,
we think was formulated to ensure ut ∈ [0, 1]N . To see that
ut = (ut−1+ww

t−1−(ut−1◦ww
t−1))◦ψt ∈ [0, 1]N , observe

that a+ b− ab ∈ [0, 1] if a, b ∈ [0, 1].

a+ b− ab = a+ b− ab− 1 + 1

= (1− b)a+ b− 1 + 1

= (1− b)a− (1− b) + 1

= (1− b)(a− 1) + 1

Observe that since a, b ∈ [0, 1], −1 ≤ a − 1 ≤ 0 and 0 ≤
1 − b ≤ 1, so −1 ≤ (1 − b)(a − 1) ≤ 0, which implies
0 ≤ (1 − b)(a − 1) + 1 ≤ 1. Thus, by the same logic,
ut−1 +ww

t−1− (ut−1 ◦ww
t−1) ∈ [0, 1] and sinceψt ∈ [0, 1],

we must have ut ∈ [0, 1].

6.4. bAbI experiments, supplementary info

Figure 17: bAbI data tasks statistics.

Task vocab_size maxlenX max#Q
--
qa1_single-supporting-fact 23.00 93.00 5.00
qa2_two-supporting-facts 37.00 582.00 5.00
qa3_three-supporting-facts 38.00 1920.00 5.00
qa4_two-arg-relations 18.00 24.00 1.00
qa5_three-arg-relations 43.00 820.00 5.00
qa6_yes-no-questions 39.00 191.00 5.00
qa7_counting 47.00 361.00 5.00
qa8_lists-sets 39.00 388.00 5.00
qa9_simple-negation 27.00 109.00 5.00
qa10_indefinite-knowledge 28.00 124.00 5.00
qa11_basic-coreference 30.00 101.00 5.00
qa12_conjunction 24.00 112.00 5.00
qa13_compound-coreference 30.00 111.00 5.00
qa14_time-reasoning 29.00 156.00 5.00
qa15_basic-deduction 21.00 72.00 4.00
qa16_basic-induction 21.00 47.00 1.00
qa17_positional-reasoning 22.00 128.00 8.00
qa18_size-reasoning 22.00 249.00 9.00
qa19_path-finding 27.00 53.00 1.00
qa20_agents-motivations 39.00 161.00 12.00

Figure 18: Loss plots showing LSTM ovefitting Task 1 where
dev acc was 0.458 and dev loss was 3.15647

Figure 19: DNC overfitting on single task experiments

Train Loss Dev loss Train Acc Dev Acc
Task 1 0.07310 3.376 1.0 0.4316
Task 15 0.01135 3.731 1.0 0.4792

13

Figure 20: Joint-task models: Training vs dev set loss and
accuracy plots

(a) DNC with [1] settings

(b) DNC using Adam: notice the overfitting.

(c) LSTM

6.4.1 Dropout experiment (after joint models)

While writing the conclusion, we had left-over GPU time,
so due to the over-fitting on the single tasks, we also ran a
dropout experiment to understand what we would have done
if we had more time, but the dropout experiment was only on
a single task due to computational and temporal limitations.
We were hypothesizing that the introduction of regulariza-
tion would help the model better generalize to unseen data.
The dropout experiment was only executed on Task 1 and the
results were somewhat promising as shown in Fig. 21 since,
like in the experiment without dropout, the accuracy on the
dev set starts flat-lining at about 0.5, but the difference be-
tween the dev and train loss plots were less drastic. However,
the train loss for the DNC with dropout was higher than the
DNC alone on all iterations and the DNC with dropout was
taking more than twice as long to train to get to a higher loss
than the DNC without dropout.

Figure 21: DNC trained on Task 1 with Dropout

14

