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Abstract

Question-answer prediction has been one of the most desired tasks in a machine
since the beginning of artificial intelligence. We study a recent model for reading
comprehension called Multi-Perspective Context Matching. Given a question, we
find the answer span in a context paragraph. To do so an encoder applies attention
of the relevance of the context words with respect to the query and process with
2 different bidirectional LSTMs question and answer words. Later a decoder uses
attention to identify different perspectives of the context words, and uses a bidi-
rectional LSTM to aggregate the information. Lastly, we combine all the hidden
layers in order to predict using 2 independent softmax the start and end of the
answer. We tested 2 different set of parameters. Although we do not achieve state
of the art or even standard performance, the analysis of the models show two ex-
tremely common pitfalls in machine learning that are worth studying: over-fitting
and over-training. A discussion and ways to avoid this phenomenon in future work
is presented.

1 Introduction

One of the most persistent challenges in creating automated machines is Question answering tasks. It
is crucial to have entities that can comprehend a paragraph at the point that for any related question,
they can infer its closest answer. It not only requires deeply understanding of the meaning of each
word, but also inference of their relations with the rest of the text body. Early developments, such
as Quarc [[1], involve a set of lexicographical and semantical rules to identify the answer. Therefore,
depending on the question word, Why, How, Who, Where, What and so on, it applies a different
heuristic analysis of each word. As we might expect, this approach requires a lot of human inter-
vention and therefore it is really difficult to generalize. Nevertheless it shows that different types of
questions relate with different parts of speech in the text.

In 2010, the reading comprehension group at University of Washington [2]] presented a set of expec-
tations for Question answering algorithms, given its enormous importance in the evaluation of any
Natural Language Processing methodology. These criteria reflect the unacceptable performance of
most of the methods at the time, such as not a totally automated process without relying in compli-
cated subroutines or human tunning, lack of adaptability for different datasets genres and sizes and
absence of learning from the experience and feedback of users.

With the explosion of machine learning applications using neural networks and deep learning in the
last decade, the concerns about machine comprehension seemed an incredible fit for the application



of this complex learning algorithms. Nevertheless, in order to have trustworthy results, neural net-
works require a vast amount of training examples, and as we could expect, it is extremely difficult
to find a reliable dataset that correspond to meaningful question, context paragraph and answer span
triples. One of the most remarkable datasets was presented in 2015 [3]] based on 93k articles from
the CNN and 220k articles from the Daily Mail website’ﬂ generating over a million of queries.
Their approach uses the bullet points that summarize each news article, and transforms them into
questions removing one word at a time.

Nevertheless, the CNN-Daily Mail dataset does not come from a human questioning process, and
therefore the queries do not cover the richness and difficulty of the real life examples. To overcome
these difficulties, a year later it was presented the Stanford Question Answering Dataset (SQuAD)
[4] , which based on 536 Wikipedia articles, utilized crowd workers to generate over 100 000 queries.
Although its genre diversity and size are not as impressive as the CNN-Daily Mail dataset, the
complexity of its questions require a model to develop more structured inferences and therefore it is
a better evaluation set.

After the spread of datasets as CNN-Daily Mail and SQuAD, multiple research groups have trained
NLP models based on neural networks with extraordinary results. Notice that determining the span
of the answer in a context paragraph is a much difficult task than just returning one-word answer or
choosing among multiple possibilities. If the length of the context is n, the former has complexity
O(n?) whereas the latter has complexity O(n). Looking for the solution span requires comprehend
each of the words in the context and the question and relate them. Therefore most of the mod-
els lately proposed replicate the encoder - decoder or Seq2seq models in machine translation [3].
Basically, it uses recurrent neural networks(RNN) to encode both question and context paragraph,
applies attention to weight them and gives the span using an additional RNN. What makes each
approach different is the type of attention used. [6] introduces a dynamic co-attention, where both
context and question words are weighted with respect to its scope in the contiguous set of words. [7]]
creates chunks or subsets of the context data as answer candidates and tends to use part of speech
patterns seen in training time to guess the best candidate.

In this project we focus on Multi-Perspective Context Matching [8]], where 2 attention algorithms
are installed. The first one is a filter layer to reduce all the redundant information on the passage
using a relevance similarity between the context and the question word vectors. This is with the
aim of that the answer remains in a small span with respect of the whole paragraph. The second
attention method is applied after encoding the context and question words using a RNN, and in this
case we compare the context with the question under multiple perspectives, i.e. multiplying each
component of the hidden vectors by learned weights and then computing similarity between question
and answer. Different sets of learned weights imply different perspectives to see each interaction.

On the following sections, we will define the problem to solve and the methodology used. Then we
will explain step by step the Multi-Perspective Context Matching approach. Afterwards, we present
results of the 2 models we have learned and lastly we analyze the causes of its poor performance
and lessons to avoid it in the future.

2 Problem

We can re-frame the problem as follows: given a pair of string sequences (@, C), where @ is a
question and C' is a context paragraph, find the span start < end € [0, |C|) such that the chain
[Cstarta CstartJrla ) Cend] ansSwers Q

In general, the answer can be in any subinterval k; < k; € [0,|C|) therefore there are O(|C|?)
options. Estimating the conditional probability for each combination of (start, end) given a set of
Question -Context (@, C) is a difficult task since it requires a training dataset where each combina-
tion is probable and the number of possibilities to handle is enormous.

Therefore, in this case we simplify the problem assuming that the position of start and end are
independent. Then, in order to choose start and end properly, we estimate the probability of any
context-word index k € [0,|C|) being the start or the end (independently) of the answer and we
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startpreq = arg ker{(l)ﬁ}é\) P(start = k|(Q, P)) (1)
dpred = P(end = k|(Q, P 2
endpred = arg, Wax (en (Q, P)) 2)

Since it is possible start,..q > end,r.q, We return as answer for the user start =
. p P
min(startyred, €ndpreq) and end = max(startyred, €ndpred)

3 Dataset

As we discussed in the introduction, having an appropriate dataset is one of the most recurrent chal-
lenges in Question answering tasks. In this case, we used a subset of Stanford Question Answering
Dataset (SQuAD) [4] provided by the teaching staff of CS224N. This dataset include tuples com-
posed by question, context paragraph, answer and (start, end)-pair that defines span of indexes we
are looking for. From the original training set we have 85670 question-answer tuples, and we di-
vide them into 95% training and 5% validation. The original validation set is taken as test set, with
the difference that it contains 3 possible answers (not necessarily different) for the same question,
making a looser evaluation of the result.

e Max. length context paragraph =~ 750 words but answer is in the first 250 word for 99.6%
of the cases

e Max. length question ~ 58 words.

3.1 Embedding

The word embeddings were provided by the CS224N teaching staff. We use GloVe representations
pretrained on Wikipedia 2014 and Gigaword SEL trimmed to smaller file to enable its use in our
model. We use a dimension = 100. In the two models we decided to keep the embedding as a
constant, in order to preserve the similarity properties between words that have been seen, and
unseen words in the test set. This is particularly important since our method depends highly in those
dependencies.

If we were sure of the generality of the training data, we could consider retraining the word vectors.
As a side note, notice that we only use word-vectors, as difference as using both word and character
embedding as in the original paper [8].

3.2 Tokening and Masking

In order to find the word vectors for a certain context or paragraph, first we create a vocabulary that
maps strings into integers, that after can be identify with word vectors. In this process, if a word
is not identified, it is assign as unknown token, and therefore all its similarity properties are lost.
In those cases, it makes a difference to have an additional character embedding, and therefore the
meaning of the word is not totally lost. This is an option we can explore in future work.

Another detail to realize is that the length of context and question varies in every tuple, and most
of the RNN approaches require a fix length statement. Therefore we need to apply masking (with
’0’s )the set of context word vectors. If the context paragraph is to large, we should trimmed to a
considerable size. This information should be additional input for the model.

4 Model

We replicated the model presented in [8]] in order to estimate the conditional probability of each of
the indexes of being start / end given a question and a context paragraph. Let C' = [c1, ¢a, ..., ¢g] the
set of context-word vectors and @ = [q1, ..., ¢s] the set of question-word vectors

*Distributed Word Representations in Assignment 4 handout



4.1 Relevance

We modify the context-word vectors by multiplying the highest significance with respect to the
question-word vectors, i.e. for all ¢ € [0, |C|)

T,
relevance(c;) = < max Clq]) ¢ 3)
seolen [leill [lgll

This will deprecate the words in the paragraph that are not closely related with the question words
and therefore we assume that they are not part of the answer (although this could exclude future
candidates).

4.2 Encoding

In order to use contextual information into the word-vectors we apply two different bidirectional
LSTMs to question and passage. We decide to apply bidirectional in order to collect the information
from left and right of the word and LSTMS because of the length of the paragraph, we can preserve
information for longer. In the original paper, they used the same LSTM cell for both RNN, in our
case we defined them independently (with different parameters), with the intuition that the type of
information we want to extract from the question is different than the one in the context. At the end
we concatenate the hidden vectors coming from both directions.

4.3 Multi-perspective Context Matching

This is the core of the method proposed in [8]. The idea is to compare under different perspectives
the word vectors from the context and the question. To do this we construct a weight matrix W &€
R7*M wwhere H is the dimension of the hidden state and M is the number of perspectives we want
to compute. For each context-hidden vector h$ we will compute a vector p; € RM of perspectives
using the question-hidden vector h{ as follows: For m € [0, M)

. m (Wi 0 h) T (Wi, 0 hi]Q|)
Full Matching p;" = W o B2 W o hi]Q||| (@)

(Wi 0 B) T (Wi, 0 h?)

Max-pool Matching p" = ’

x-p 8 P = 010N (Wi o RE[[ [[Won o 1] ”
g om L (Win © 1) T (Wi © 1)

Mean-pool Matching p} ) > Wi o BS|| |[|W, Oh;H “
jeloqn T T I

Notice that this three types of matching represent: the similarity with r the whole concept of the
question (full matching) represented in the last hidden vector; the maximum similarity among each
partial representation of the question; and an aggregated similarity along we walk through the ques-
tion. Each of these matching types tend to identify activations that become important to different
types of question: direct (What, when, where) v.s. inference (why, how).

In practice we will train a weight matrix for each matching type and direction of the hidden vector.
Notice that for other approaches, we could replace the Hadamard product by a matrix-vector product,
and therefore each perspective would mean a projection in a different subspace and taking the energy
norm in such. This could be an interesting feature to analyze in the future.

4.4 Decoder

To extract the start and end predictions, first we apply an additional bidirectional LSTM to the
perspective vectors, in order to aggregate the information from the context, more specifically, make
a smoothing with respect to its neighbors.

At last, to predict the conditional probabilities according to each position, we concatenate all the
hidden states, apply a linear transformation and then a softmax. We repeat this process for both
start and end probabilities, using different parameters.



Table 1: Parameters used in the Model

PARAMETER VALUE
Question size 58
Context size My = 750/Ms = 250
Embedding size 100

Hidden layer in Encoder 120

Hidden layer in Decoder 60

Number of perspectives 50

Dropout in all the layers M; = 0.15/M5 = 0.5

Gradient clipping > 10

Learning rate 0.0001

Batch size M, =10/M> = 40
Training time My = 10hs/My = 1.5hs

We evaluate our model using cross-entropy loss, in order to replicate our optimization goal. In this
last step we need to take into account two factors: masking and start < end. For masking, since
we know the original length of the paragraph, we can neglect the effect of the padding by masking
the result of the softmax computation. This means that we make zero all the entries of the result of
the linear transformation before applying the softmax. Therefore the predictions of start and end
will always be among the real corpus of the paragraph. Nevertheless, we still can face the problem
of d start > end. For practical matters we just adjust each of the predictions such that they satisfy
this constrain, but this is not enforced in the loss function as a constraint. For future development
we can consider scenarios to include this constraint in the optimization process, for example add to
the loss a term dependent on startyreq — endpred

5 Experiments

Having an unbelievable complex model as this one where there are a lot of different parameters to
tweak, test and improve makes us have an enormous set of initial expectation. Nevertheless, this
number of ideas and experiments reduced exponentially once we faced a vast number of challenges
in the implementation of the model, specially setting up a baseline that was executable using Ten-
sorflow + GPUs.

First we got a runnable implementation using only full matching perception, dimension of hidden
layers = 20 and dropout = 1 (i.e. not dropout). The results of this model stayed around 5% F}
error even for training data, after multiple epochs of training. This method was unable to learn the
complexity of this task, but moves us to have a starting point. We would not include further analysis
of this model, because it corresponds to only a toy implementation of the method.

After this model we implemented 2 other versions, both of them described the structure explained
in the model, including the three types of multi-perspective matching. The difference between the
two of them corresponds to change in the dropout rate and the size of the paragraph (see table [I]).

Initially, we started with the maximum context size of 750 words, in order to capture all the infor-
mation from the paragraph, but this resulted in a huge amount of parameters, that originated two
problems: large amount of training time (10 h per epoch) because of the GPU running out of mem-
ory (batch size small = 10); and over fitting. As we can see in figure[T] the model M after 6 epochs
is around 60% in the train dataset, whereas is only 10% accurate in the validation set. The overfitting
is also clear when we see the fast decay of the loss function (figure [2) in each epoch, and the small
values it achieves.

After realizing this fact, and expending around 60 hours in computations, we decided to modify the
model reducing the number of words we count in the context to 250 (because 99.6% of the cases the
answer span will be contained in this interval). But since this could be not enough, we increase the
dropout rate to 50% given that this is a standard technique to prevent overfitting in complex models.
In those cases the training one epoch took only 1.5 hours (see table [I)).
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Figure 1: Performance the train and validation set of the two models among different epochs.
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Figure 2: Behavior of loss function among different epochs.

As we can see in figure [T} the overfitting is removed from the model, and now both training and
validation have the same behavior along each epoch. Nevertheless as we can see in figure[2] the loss
remains constant after epoch 5 although we trained up to epoch 10. This means we overtrained our
model. Although in the beginning we could think that overtraining the model is harmless, we would
see in the following section that this confuses the method and can damage the prediction.

5.1 Evaluation

To evaluate the performance of both methods, we apply a quantitative and qualitative analysis. The
first one is to measure our closest to benchmark and state of the art approach, and the second one, to
analyze in which cases the method performs correctly and in which others it needs external help.

5.1.1 Quantitative

In this case we use 2 standard measures for accuracy: Exact matching and F}:

e Exact matching measure when the predicted start and end totally coincide with the true
values of the answer.



o F; measures the overlap between prediction and ground truth.

overlap = max(0, min(endpred, endyeqr) — max(startyred, startreq +1)  (7)

. overlap ®)
recision =
P endpreq — Startpreq + 1
overla

recall = P 9

end,eqr — Startyeq + 1
2 % precision * recall
fi= (10

precision + recall

5.1.2 Quantitative

We look for the conditional probability vector for start s; and end e; predicted in the first 100 words
of the validation set after each epoch ¢ to see: How training affects the prediction?, Which types of
questions are the easiest/hardest to solve?. M is represented by orange and M5 by blue.

e M5 avoids overfitting and reduces gap of uncertainty with respect of M;. Extremely
accurate with where - when - -what questions, that usually require a small answer next to
the same words we find in the question.
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e Opvertraining of M, damage interval prediction, having worse results than M, in large
answers. We can see that in epoch 7 the model finds the correct answer, but if we continue

training it looses it in epoch 10.
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s1
el
s2
e2 [ |
53 .
e3 ]
s4 ]
ed ]
55
es .
s 0
e
s1
el | |
52
e2
s7 [ | u
e7 [ |
s 10 [ ]
e 10

(

DARPA

who
continued
and

He

also

the
Interstate
)

the

the
establishment

Defense

Advanced
via
the

conservative
New

Deal
agencies
expanded
Social
Security
launched
Highway
System
Research
Projects
Agency
strong
science
education
National
Defense
Education
encouraged
peaceful



e Strong dependence of direct similarity between question words and answer words. None
of two models can infer answers that do not include words from question. The sim-
ilarity algorithms only work for direct similarity, and do not combine the context.

Why did some landlords burn their own buildings ?
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6 Discussion and Future work

We analyze the effect of choosing different parameters in the Multi-perspective context matching
model, and how we can easily fall in pitfalls such as overfitting and overtraining. Our first mode
M suffers from extreme overfitting, caused by unnecessary large amount of parameters and low
dropout rate. Therefore increasing the dropout rate and reducing the number of unnecesary words in
M5 reduces the overfitting, but then we need to be really careful to stop the training once F} error in
validation set remains approximately constant, otherwise we can just create confusion and decrease
the performance in the model.

In the qualitative studies we saw that we get a really good performance in direct similarity, (i.e.
What,When,Where questions). But, although the number of parameters is large, it is not enough to
train more complex features such as inference of causes and consequences in questions including
Why and How. Therefore we need to redistribute the number of parameters in a smarter way, in-
cluding for example additional recurrent neural networks and more powerful attention algorithms
to identify this dependencies. One important point is that the last softmax layer involves a huge
linear transformation where the tradeoff between number of parameters and complexity is not fa-
vorable. Therefore we propose to just apply a small transformation for each vector and compute its
probability independently.

Also there is still room to tun all the hyperparameters involved: Dropout rate, number of hidden
layers, learning rate, number of Perspectives. And in order to move forward we need to also analyze
the effect of each layer of the model, i.e. which are the benefits of choosing a determined attention
models, how to relate the start and end predictions (enforcing start < end in the model), choosing
among LSTMs v.s. GRUs, Bi directional versus one-directional recurrent neural networks, and what
about doing the process deeper and deeper, stacking RNNs one over the other.

This was an incredible experience, although the learning curve was really step at the beginning,
passing from a fill out code to decipher a template and start your model from scratch. Also I discover
the importance of making design decisions at the beginning instead of just running a model with non-
sense parameters, because these decisions affect hardly the time that you expend training a useless
vs. meaningful method.

Thanks to all the teaching staff of CS224N for this challenging course.
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