
Ensembling Insights for Baseline Text Models

Henry Ehrenberg
Stanford University

henryre@cs.stanford.edu

Dan Iter
Stanford University

daniter@cs.stanford.edu

Abstract

Deep neural networks are in vogue for text classification. The lack of interpretabil-
ity and computational cost associated with deep architectures has led to renewed
interest in effective baseline models. In this paper, we review several popular base-
line models which strike a balance between traditional and neural approaches, and
propose improvements by combining their key contributions. In particular, we
study gradient-tuned word embeddings, modeling n-grams, and generative sen-
tence representation methods. We evaluate our methods by comparing end perfor-
mance and training time on sentiment analysis and topic classification tasks. By
combining techniques of popular baseline models into a single shallow architec-
ture, we outperformed the individual models on all tasks, were competitive with
traditional and deep approaches, and maintained fast training times.

1 Introduction

Baseline methods are an essential but often neglected component of the natural language processing
field. As deep neural network-based methods for text classification continue to grow in popularity,
it becomes increasingly more important to compare their performance to competitive, but simpler
models. Though deep neural networks alleviate much of the burden of feature engineering and have
more representational power than traditional models, baseline methods can be competitive on a wide
range of tasks, such as text classification. Therefore, it is critical to include baseline comparisons to
understand performance and efficiency trade-offs when introducing new models. High performing
baseline methods are also frequently deployed in production themselves due to their low cost to train
and serve, their interpretability, and the relative ease with which they can be refined.

Simple linear and maximum entropy models have always and will continue to hold an import place
as baseline models. However, recent research interest in baseline models has centered around shal-
low neural architectures, which strike a balance between traditional and deep learning approaches
to natural language processing. Shallow neural networks and embedding-based models have sev-
eral advantages over traditional methods, since they are able to share parameters across features and
classes. Our goal is identify the strengths and weaknesses of popular shallow baseline methods for
text classification, and propose approaches to synthesize their key insights.

The remainder of this paper is organized as follows. In Section 2, we review several baseline ap-
proaches for text classification with a focus on shallow neural networks. We identify the key insights
of these methods, and design a new shallow architecture that combines them in Section 3. Section 4
presents the results of experiments, in which we compare the performance of several baseline mod-
els to deep learning approaches on sentiment analysis and topic classification tasks. We conclude
with a brief discussion and outlook for future work in Section 5.

1

2 Related work: popular models for text classification

Traditional sentence and document classification methods rely on a hand-tuned or statically gen-
erated feature set. Common feature sets include bag-of-n-gram (BoW) representations (Berger
et al., 1996), decomposition-based embeddings (Levy et al., 2015), or representations of parse trees
(Collins and Duffy, 2001). More recently, neural word embedding methods - such as skip-gram
(Mikolov et al., 2013) and GloVe (Pennington et al., 2014) - and deep neural networks - such as
long short-term memory networks (Hochreiter and Schmidhuber, 1997) and convolutional neural
networks (Collobert and Weston, 2008) - became the fashionable approach for text classification.
While these models can capture long-term and non-linear relationships between pieces of informa-
tion without a laborious feature engineering process, they are generally not interpretable (Goldberg
and Levy, 2014) and require either a great deal of time or a great deal of computing power to train.

In response to these drawbacks, there is renewed interest in developing effective baseline methods
for text classification which strike a balance between traditional methods and deep neural network-
based approaches. Wang and Manning (2012) show that using bigrams and a simple modification
of BoW representations with a linear support vector machine yields performance competitive with
deep learning approaches. Joulin et al. (2016) introduce a shallow neural architecture for sentence
classification implemented in the fastText library1 which achieves comparable results in seconds to
models that took days to train. Finally, Arora et al. (2017) derive a method for combining fixed
word embeddings to form sentence representations which beat long short-term memory (LSTM)
models for some tasks. In the following section, we combine ideas from these papers to motivate
new shallow architectures for text classification.

3 Combining shallow baseline approaches

3.1 Embedding-based models for classification

The binary fastText classification model (Joulin et al., 2016) is a simple and effective approach to
embedding-based text classification. Let S(k) be the unordered set of k-grams in the sentence S, and
let U be an embedding table where the embedding for an entry v is Uv . Then the class prediction of
the model f is given by

f(S) = σ(wTΦS + b) where ΦS =
1∑K

k=1 |S(k)|

K∑
k=1

∑
v∈S(k)

Uv,

K is the desired n-gram representation, and σ(·) is the sigmoid function. The key to the effectiveness
of fastText is that the embedding table U (in addition to w and b) is tuned by gradient descent.
Therefore, the model learns to represent each vocabulary entry by a vector which is discriminative
for the task at hand. The table U can be initialized randomly or with a set of pretrained word vectors.

3.2 Improving sentence representations

The primary weakness of fastText is its overly simple sentence representation. By taking an un-
weighted mean of word vectors, the representation of unmeaningful words (such as “the” or “in”)
contribute equally to the representations of words which are important to the classification. Although
the model may train the representations of unmeaningful words to be close to the origin, there is no
guarantee of this.

Therefore, we propose replacing the sentence representation in the fastText model with the rep-
resentation for fixed word embeddings introduced by Arora et al. (2017). The sentence embedding
method is derived via maximum likelihood of a generative language model, and combines word vec-
tor reweighting with denoising via matrix factorization. The authors demonstrate that it performs
competitively with LSTM models on several text classification tasks.

1fastText on GitHub: https://github.com/facebookresearch/fastText

2

https://github.com/facebookresearch/fastText

Given a d-dimensional embedding table U, a table of unigram frequency estimates p, a smoothing
parameter λ, and a d× d matrix T, we define

ΦS(λ,T) = (Id − T)
1

|S(1)|
∑

v∈S(1)

λ

λ+ pv

Uv

For a model using static embeddings, the final sentence representation is given by ΦS(λ, zzT) where
z is the first right singular vector of the matrix formed by ΦS(λ, 0) for each S in the training set,
and λ remains a parameter to be chosen.

As described by the authors, the direction z (the “common component”) represents a noise direction
and correlates with words like “the” and “in”. By removing each sentence embedding’s project along
this direction, the representation retains only meaningful context. However, the fastText training
paradigm updates the embedding table via backpropagation every training batch, and the original
common component may not be a noise direction in the new embedding space. In the following
sections, we address this issue and discuss other nuances.

Updating the common component vector

We explore the following three methods for updating the vector z in section 4.3.

• Exact update: At the beginning of each training batch, the vector z is computed exactly
using singular value decomposition over the full training set. This is computationally ex-
pensive, but guarantees the vector is updated correctly.
• Lazy update: At the beginning of every T th training epoch, the vector z is computed

exactly using singular value decomposition over the full training set. This is less expensive,
but does not account for word vector updates within each epoch.
• Gradient update: The vector z is initialized using singular value decomposition over the

full training set and is updated by gradient descent at each training batch. This is the
cheapest option, but does not guarantee that z represents the originally intended direction.

Including n-grams

Motivated by large performance gains reported from using n-grams (Wang and Manning, 2012),
we extend the above representation to include n-grams. However, pretrained word embeddings and
word frequency estimates for large domain-specific corpora (used to populate pv) are typically only
available for unigrams. Therefore, we define

p̂v = min
v′∈v

pv′

where v′ ∈ v are the sub-grams of v, and randomly initialize the entries of Uv for n-grams in the
training set which do not have a pretrained embedding. Then we have

ΦS(λ,T) = (Id − T)
1∑K

k=1 |S(k)|

K∑
k=1

∑
v∈S(k)

λ

λ+ p̂v

Uv

Choosing the smoothing parameter

For fixed word embeddings, λ is the only tunable parameter for the sentence embedding. The
authors report λ = 10−3 to be a generally effective value. Therefore, in experiments where we tune
the embeddings with backpropagation, we initialize λ = 10−3 by convention and update the value
of the exponent via gradient descent during training.

3.3 The SHALO library

The SHALO library2 implements all of the above models in TensorFlow3. The library also contains
sparse BoW and LSTM models for comparison. Table 1 summarizes the models in SHALO.

2SHALO library on GitHub: https://github.com/henryre/shalo
3https://www.tensorflow.org/

3

https://github.com/henryre/shalo
https://www.tensorflow.org/

Model Word representation Sentence representation Details
Sparse BoW One-hot encoding Word vector sum Different model graph

LSTM Trained embeddings Output of last LSTM cell
Linear embedding Fixed embeddings Word vector mean

fastText Trained embeddings Word vector mean
TTBB Fixed embeddings Arora et al. (2017)

Tuned TTBB Trained embeddings Arora et al. (2017) Gradient-tuned common component
Exact TTBB Trained embeddings Arora et al. (2017) Common component computed exactly

Table 1: Summary of the models in the SHALO library

Most of the embedding-based models allow the user to choose whether they want the word embed-
dings to remain fixed from a pretrained set, be tuned from a pretrained set, or be trained from a
random initialization. SHALO allows users to choose between training with `2-regularized logistic
loss, which induces a logistic classifier, or with `2-regularized hinge loss, which induces a maximum
margin classifier. The library also contains grid search utilities to tune standard hyperparameters
such as learning rate, regularization, and embedding dimension.

The models in SHALO4 differ only in their text preprocessing and sentence representation methods,
and therefore the library uses a minimal class hierarchy to construct each model in a few lines of
code. For example, fastText is defined in only seven lines.

4 Experiments

4.1 Datasets

We evaluate the models on three datasets for two binary text classification tasks: sentiment analysis
and topic classification. AG News (Gulli, 2005) is a dataset of news articles that are organized into
four categories. We used only two categories: “Sports” and “Science/Technology”. AG News arti-
cles have a title and a body, and we concatenate them to create the document for prediction. Amazon
Reviews (McAuley and Leskovec, 2013) is a dataset of reviews for Amazon products categorized
into positive and negative. We only use the review and not the title. IMDB Reviews (Potts, 2011)
is a dataset of movie reviews, also categorized into positive and negative. These reviews tend to be
much longer than the other datasets, averaging 240 words per review.

Due to limitation on compute availability, we randomly sampled a set of 5,000 examples from each
dataset for the training set and 1,000 for the development set. We use the full test set for each task
to evaluate out methods. Note that if we used the entire dataset, training a single model could take
over a day on some of the datasets.

4.2 Training procedure and evaluation

The raw text for each data set was only minimally processed: words were lowercased and tokens
with only one character were discarded. The embedding tables for all models were initialized with
a set of 174,015 300-dimensional embeddings trained using word2vec with dependency context
windows on English Wikipedia (Levy and Goldberg, 2014). The embedding for any n-gram found
in the training set but not the pretrained set were randomly initialized. Marginal unigram frequency
estimates were derived from the Google Web Trillion Word Corpus (Norvig, 2008).

We fit each model listed in Table 1 to the three datasets described above. To optimally train each
model, we must tune a number of hyperparameters. For each model we searched over the loss func-
tions (log or hinge), the learning rate (between 10−3 and 10−1), and the `2 regularization parameter
(between 10−5 and 10). Because of the large space of hyperparameters, we use a random exploration
of the full grid search to attempt to find the optimal parameters. We evaluate the sampled hyper-
parameter sets on the held out development set, and record the development accuracy at every five
epochs. We then choose the snapshot of the model with the best performance on the development
set for our final evaluation on the test set.

4The sparse BoW model uses a different model graph for efficient sparse matrix-vector multiply.

4

n-gram cos sim.
art imitating 0.270
pbs program 0.244

cautionary tale 0.219
shorty resonate 0.215
composition of 0.210

so densely 0.206
and cunning 0.205

exhilarating funny 0.201
possibility of 0.201

and joe 0.202
(a) Initial value from exact computation, λ = 10−3

n-gram cos sim.
it’s 0.525
he 0.501
are 0.496

of modern 0.489
three 0.477
kind 0.467
pace 0.452
fare 0.448
hits 0.442

enough 0.441
(b) Epoch 1, λ = 10−2.73

n-gram cos sim.
in 0.796
the 0.735
he 0.700

that 0.695
his 0.694
its 0.679
but 0.677

pace 0.666
would 0.659
seems 0.659

(c) Epoch 2, λ = 10−2.47

Table 2: Closest vocabulary entries (by cosine distance) to common component vector across train-
ing epochs for the gradient update model. The vocabulary entries most similar to the initial common
component vector do not appear to be meaningless. However, after only two epochs, the vector is
trained to correlate highly with semantically unimportant words.

4.3 Common component update strategies

We experimented with the three common component update strategies listed in Section 3.2. Even
when updating every epoch, the lazy update approach resulted in increasing loss as training pro-
gressed since the word embedding space evolved fast enough to render the stale common compo-
nent vector deleterious to learning. Training loss did decrease with the exact update strategy, but
final accuracy results were surprisingly poor, and further examination is needed to determine why.
Therefore, we do not include these approaches in the following results section.

On the other hand, the gradient update strategy yielded good results, and demonstrated that the
common component vector can be improved beyond the exact singular vector computation. Table
2 shows the evolution of the common component vector being trained by gradient descent. The
initial low quality of the common component vector was due to the quantity of randomly initialized
embeddings when using both unigrams and bigrams.

4.4 Text classification results

Table 3 shows the classification accuracy for each of the models on the three tasks, and Figure 1
shows their training time. Due to dataset size and the binary problem formulation, the selected
tasks were particularly well suited for BoW classification, which had the best scores on both senti-
ment analysis tasks. In particular, it had at least a 10 point improvement over all other models on
the IMDB Reviews (although its training time was drastically greater than all methods besides the
LSTM). This finding joins a long list of others that show BoW models are a critical baseline for
binary text classification. Our results here motivate further experiments in regimes where models
like fastText outperformed BoW models significantly, such as multiclass problems and very large
datasets.

The tuned TTBB model outperformed both vanilla TTBB and fastText on all tasks. This validates
our hypothesis that combining gradient-tuned word embeddings, modeling n-grams, and generative
sentence representation methods produces a more powerful model than these techniques produce
individually. Surprisingly, standard TTBB was the worst performing method (including the linear
embedding which is a strictly simpler model) on all tasks. The high classification performance
reported by Arora et al. (2017) used a multilayer neural network on top of the sentence embedding,
rather than just a single linear layer as used here. Therefore, the static sentence embedding method
they presented may require more representational power downstream to perform well.

The LSTM model had the best score on AG News, where almost all models had very high accuracy.
It had middling performance on the sentiment analysis tasks. On one hand, the fact that the tuned
TTBB model outperformed the LSTM on Amazon and IMDB Reviews is an encouraging sign for
shallow modeling approaches. However, the more important lesson is that text classification tasks
are not demonstrative targets for deep learning methods. Instead, proposed deep neural networks

5

should prove their efficacy on structured prediction tasks which require modeling non-linear and
long-term relationships.

The linear embedding model and standard TTBB had the fastest training times across all tasks since
neither uses backpropagation to update word embeddings. The tuned TTBB model and fastText
were similar in speed, and offer a worthwhile trade-off to the faster models given the large accuracy
improvements they provide. As expected, the LSTM was by far the slowest model to train. However,
the sparse BoW model was much slower than fastText or the tuned TTBB model for the IMDB task
due to the length of the documents. It is important to note that hand-rolled learning code, such as the
official fastText library or LIBLINEAR (Fan et al., 2008), will be orders of magnitude faster than
the TensorFlow implementations in SHALO. However, we trained all models in Tensorflow in order
to fairly study relative training speeds.

Model AG News Amazon Reviews IMDB Reviews
Sparse BoW 97.50 81.99 87.76

LSTM 98.96 80.91 75.84
Linear embedding 97.74 77.11 75.07

fastText 97.13 80.85 76.43
TTBB 65.84 75.97 75.06

Tuned TTBB 98.32 81.26 77.33

Table 3: Accuracy (%) for evaluation tasks. The two best results for each task are shown in bold.

Figure 1: Training time (seconds) for each of the methods. Training was terminated after exceeding
a maximum number of epochs (due to computing constraints), or after training loss convergence.

5 Conclusions and future work

In this paper, we reviewed several popular baseline models which strike a balance between tradi-
tional approaches and deep learning, and proposed improvements by combining their key contribu-
tions. We found that the new shallow model outperformed the previous embedding-based baseline
models on all tasks we performed. We also provide more evidence that traditional bag-of-n-gram
models are powerful despite their simplicity, and our results suggest that text classification may not
be an interesting target for deep learning methods.

There are several directions for future work. Given the promising results of the combined baseline
model, we want to investigate its performance further in regimes where fastText and deep methods
significantly outperformed BoW models. These include larger datasets with more classes. We are
also interested in applying these methods to structured prediction, such as sequence tagging. We
hope that research interest in baseline models continue, as they are a critical component of natural
language processing in the age of deep learning.

6

Acknowledgments

We would like to thank our mentor Danqi Chen, the rest of the CS224n course staff, and our advisor
Chris Ré for unknowingly providing us with computing resources.

References

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. ICLR, 2017.

Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A maximum entropy approach
to natural language processing. Computational linguistics, 1996.

Michael Collins and Nigel Duffy. Convolution kernels for natural language. NIPS, 2001.
Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep

neural networks with multitask learning. ICML, 2008.
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR:

A library for large linear classification. Journal of Machine Learning Research, 2008.
Yoav Goldberg and Omer Levy. word2vec explained: Deriving Mikolov et al.’s negative-sampling

word-embedding method. arXiv preprint arXiv:1402.3722, 2014.
A. Gulli. The anatomy of a news search engine. International World Wide Web Conference, 2005.
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997.
Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient

text classification. arXiv preprint arXiv:1607.01759, 2016.
Omer Levy and Yoav Goldberg. Dependency-based word embeddings. ACL, 2014.
Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned

from word embeddings. TACL, 3, 2015.
J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions

with review text. RecSys, 2013.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-

tions of words and phrases and their compositionality. NIPS, 2013.
Peter Norvig. Natural language corpus data. In Beautiful Data. O’Reilly, 2008. URL http:
//norvig.com/ngrams/.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global vectors for word
representation. EMNLP, 2014.

Christopher Potts. On the negativity of negation. Proceedings of Semantics and Linguistic Theory
20, 2011.

Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good sentiment and topic
classification. Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Short Papers-Volume 2, pages 90–94, 2012.

7

http://norvig.com/ngrams/
http://norvig.com/ngrams/

	Introduction
	Related work: popular models for text classification
	Combining shallow baseline approaches
	Embedding-based models for classification
	Improving sentence representations
	The SHALO library

	Experiments
	Datasets
	Training procedure and evaluation
	Common component update strategies
	Text classification results

	Conclusions and future work

