Machine Comprehension Using Multi-Perspective
Context Matching and Co-Attention

Andrei Bajenov Tarun Gupta
abajenov@stanford.edu tarung@alumni.stanford.edu

Abstract

Several deep-learning models have been proposed for the Stanford Question An-
swering Dataset (SQuAD). We explore the effectiveness of different layers of
these proposed models, and attempt to reproduce their results. Our most suc-
cessful results stem from a combination of Multi-Perspective Matching models,
as well as Coattention Networks. We build an ensemble of these models with dif-
ferent layer configurations and hyper-parameters to achieve a final F1/ EM scores
of 69.075 / 57.957 on the test dataset.

1 Introduction

Question answering is a popular topic in NLP research. To aid with research in this area, Stanford
developed the SQuAD dataset. It consists of over 100k triplets: (context paragraph, question, answer
span within the context paragraph). The context paragraph is an arbitrary piece of text with an
associated question. The answer to the question is selected as a span within the context paragraph.

The task given to NLP researchers is to predict the start and end indexes of the span. For each
question, three potential answer spans are provided. Two measurements are used to evaulate the
success of a model:

e F1 score which is based off of how many words intersect between the predicted span and
the given spans

e Exact Match (EM) score is the percentage of answers that are predicted exactly.

1.1 Previous Work

Many deep-learning models have been proposed that attempt to make accurate predictions on the
SQuAD dataset. We implement, evaluate, and explore the performance of a few of them:

o Multi-Perspective Context Matching [1]
e Dynamic Co-attention Networks [2]
e Match-LSTM with Answer-Pointer [4]

What we found is that all these models have four basic layers and seem to follow the simple formula
of embed-encode-attend-predict:

e Paragraph / Question Representation Layer - This layer is usually just a set of single or
bi-directional LSTM networks that take word embeddings of the paragraph and question
and build hidden layer representations for each word. The output matrix contains rich
contextual information about each word (has context from both left and right of word). The
output is :

— a paragraph representation (2h x P) that encodes contextual information about each
word in the paragraph independent of the question

— a paragraph representation (2h x @) that encodes contextual information about each
word in the question independent of the paragraph

e Mixing Layer - A layer that attempts to mix the hidden layers of the question and context
representation. We try mixing via co-attention and matching to capture interaction between
context and question words. Output is a paragraph representation 2/ x P

e Query-Aware Paragraph Representation Layer - We consume the output of the mixing
layer and feed to a BILSTM to generate P hidden states. This layer generates a paragraph
representation that encodes contextual information about each word conditioned on the
question.

e Prediction Layer - a layer that takes the mixed hidden states, passes them through some
other network to finally get probabilities for start and end indexes.

The three papers we explored have slightly different implementations and strategies for implement-
ing these layers. We implement a few of them and evaluate their effectiveness.

2 Model Implementation Details

We tried implementing several models. Below we describe the different implementations for layers
across the Multi-Perspective Context Matching Model [1] (Figure m) and Co-attention [2] (Figure
2).

2.1 Multi-Perspective Context Matching
The first model we tried implementing is described in [1], and has all the layers we described in

section 1.1. The overview of the implementation is shown in Figure [T} Below is a brief overview of
some of the key layers:

Pr(a,|Q, P) Pr(aeiQ, P)

¢
Prediction Layer softmax softmax

Aggregation Layer I I I_, I
Multi-Perspective Context Matching Layer I I I I
my mp e my my

[) \

[|
Context Representation H kIF “I H klk .-I
T A

Filter Layer I I I I

’

Pi Py oy Pj o P
[[[[]
A
‘Word Representation I I I I > 7] < I I I I
Layer P1 Pz ... Pj .. Py G 9 .. 9 .. 9
Passage Relevancy matrix Question

Figure 1: Architecture of Multi-Perspective Context Matching Model [1]

2.1.1 Paragraph / Question Embedding Layer
As described in section [I.1]

2.1.2 Filter Layer

One key idea is to pass the paragraph vectors, pp through a filter that emphasizes the relevant words
in the passage and removes the redundant parts. The steps in this process are described below:

o Calculate passage-word to question-word cosine similarity, ;; = cossim(pp;, qq;)

o For each passage-word, define relevancy as r; = max;(7;;)

e Use relevancy to scale each passage-vector, pp; = r; * pp;

2.1.3 Paragraph / Question Representation Layer

As described in section pass paragraph-vectors and question-vectors through a BiLSTM to
obtain forward and backward context representations for question and paragraph vectors.

2.14 Matching Layer

e We compute forward and backward matching matrices as cosine(W1 o pp ., W2 © qq)
and COSine(WQ O PPbw W2 o quw)

e We reduce these via mean pooling to compute P vectors containing question-aware repre-
sentation for each paragraph word.

e We feed a fusion of these matching vectors to a BILSTM to obtain P vectors, one for each
passage-word

2.1.5 Softmax Prediction Layer

Consumes the P x [dimensional output, x of the BILSTM to generate probability distributions over
the P passage words. We assume that the probability distributions are generated independently.
bs = TWtarte + bstart pe = TWena + bend

2.2 Dynamic Co-attention Networks

The next model we implemented also has similar layers we described in section 1.1, with slightly
different implementations. The full description of the model can be found in [2]. Below is a brief
overview of the key layers.

2.2.1 Embedding Layer

We map each word in paragraph and question to d-dimensional vector space via glove embeddings
to generate P x d and () X d matrices.

2.2.2 Paragraph / Question Representation Layer

As described previously in[I.1]

2.2.3 Co-Attention Layer

In this layer, the goal is to mix the the vectors representations pp and gq to compute a heat-map
like matrix for each example. This attention matrix helps us to localize the interesting parts of the
paragraph and helps us identify the ”patch” corresponding to the answer (i.e. parts of passage that
respond/interact heavily with the question).

Algorithm details are given below:

e Given the contextual representation for each word in paragraph and question, pp : 2h X P,
qq : 2h x Q

u: Uy

i A S
¢ H H H H H | bi-LsTw [bi-LsTw [bi-LsTM [bi-LsTM [bi-LsTm [

[X N]
docmmwgn AP
AQ
-
e
a A\l
alllil
| O
Al
n+1

Figure 2: Architecture of Co-attention encoder [2]

e Produce affinity scores and generate context-to-query attention and query-to-context atten-
tion. S = pp’qq and AY = softmax(S) and AP = softmax(ST) Produce an attention
context vector C? = pp A4

e Map question encoding into the space of paragraph encodings. The concatenation repre-
sents the document encoding conditioned on question representation C? = [qq; CI| AP :
2hk x P

e Finally, feed fusion pp,; to a BILSTM to obtain P vectors corresponding to each word in
the paragraph, where:

PPate = [pp, C?] (1)

These vectors contain all information about the paragraph word, its context and question-
to-paragraph interaction.

2.2.4 Softmax Layer

Consumes the P x [dimensional output, x of the BILSTM to generate probability distributions over
the P passage words. We assume that the probability distributions are generated independently.
s = TWtart + bstart e = TWend + bend

2.3 Match-LSTM with Answer-Pointer

The final model we implemented is described in [4]. It is very similar to the Multi-Perspective Con-
text Matching model, with a slightly different implementation. Unfortunately, our implementation
of the model turned out to be quite slow (5+ hours per epoch to train), so we opted to stick with the
Multi-Perspective Context Matching model, which had a similar idea with a faster implementation.

2.4 Training

During training, we used a slightly modified version of a cross-entropy loss function. We penalized
cases where the predicted answer span length was significantly different from the actual length.

We let y! and ' be the true end and start indices for the i-th example and ps® and pe’ be the predicted
start-index and end-index probability distributions over the P words in the passage. Then,

1 N o 1 o
L(9) = _N[Z logps'[yi] + > _log pe'[yl]] + N > a(ll - 1) (2)
i=1 i=1

where the predicted span-length, I}, = arg maxy, (pe'[k]) — arg maxy (ps*[k]) 4 1 for k € [0, P] and
the actual span-length I}, =y — y% + 1
Therefore, we effectively enriched the vanilla cross-entropy loss with an L, penalty for incorrect

predictions of answer-span length. In addition, this ”span-loss” term penalizes negative lengths and
forces the end-index to be greater than the start-index.

In addition, in some experiments, we find that we can control some trade-off between F1 and EM
using this parameter. Increasing this penalty, can lead to an increase in EM score while decreasing
F1 score.

We used the Adam Optimizer to train our model with varying learning rates ranging from 0.01 to
0.0001.

2.5 Test

2.5.1 Prediction Strategy

During training, we tried a very naive prediction approach of predicting start-index and end-index
independently i.e. start = argmaxy ps[k] and end = argmaxy, pe[k]. This is computationally
cheap O(P) and sits well with the well-known cross-entropy loss function.

However, for making predictions a more mathematically sound approach is to predict
the span-tuple (start, end) jointly while enforcing end > start ie. (start,end) =
arg Max(g; ei),ei>—si PS[si]pefei]. This is more expensive O(P?) but should lead to higher per-
formance on dev-set.

2.5.2 Ensemble Strategy

The performance of each of our individual models wasn’t as good as we’d hoped, so we decided to
try an ensemble of the models, and got significantly better results.

Given M model-predictions for an example, we select a span s defined by (i, j) where ¢ < j is our
predicted (start-index, end-index) tuple for that example, such that:

M M
1,7) = arg max PM(s|p, q] = arg max s pe(™)[
(i,5) = argmax [| P [slp, q] = arg may ﬂglp [ilpet™ [1]

m=1
Hence, we effectively combine the learnings from multiple models by performing element-wise
multiplications of the predicted probability vectors and choosing the span with maximum overall
predicted probability. This approach beats the naive approach of independently making predictions

for start and end indices for each model. Rather we make a span prediction and choose the span with
the maximum probability across all predictions.

2.6 Gradient Clipping

Gradient Clipping is performed when the norm exceeds a threshold value. This has been provided
to be an effective strategy for dealing with exploding gradients in recurrent networks.

2.7 Model Regularization: Dropout

We experimented with dropout across various layers. We strictly enforced dropout on all LSTM
layers.

3 Experiments

3.1 [Initial Settings

Since the amount of work done is proportional to the paragraph length, P, we identify an optimal
value of P and truncate or pad all paragraph-sequences to that length. We find that P = 400 gives

Histogram of text-length, max_size = 60

Histogram of text-length, max_size = 766

50000
40000
30000
20000

10000

o 10 20 30 40 50
train.ids.question length

(a) Histogram of question

60

40000

30000

20000

10000

0
0 10 200 300 400 500 600 700 800
train.ids.context length

(b) Histogram of context

70000

60000

50000

40000

30000

20000

10000

o

Histogram of text-length, max_size = 46

o 10 20 30 40
train.answer length

(c) Histogram of answer

sequence-length, @ sequence-length, P sequence-length

Figure 3

us good coverage (99.98% of examples have paragraph-length < P) across the training examples.
For question text, we use a max-sequence length of) = 60 that gives us 100% coverage across
the training set. We allowed the word-embeddings to be learn-able and controlled over-fitting via
dropout. We clipped gradients if they exploded above the threshold value of 10.

We start with size 100 for all embedding and hidden-state layers. We allowed trainable embeddings.
All models are implemented in TensorFlow.

We found that starting with a a large learning rate to be an effective strategy for initial exploration
of parameter-space followed by lowering the learning rate as the validation-loss starts to flatten out
to explore effectively in the neighbourhood of true minima.

3.2 Some Ideas Explored

We tried several modifications to existing architectures. For example, we tried introducing a filter
layer post-coattention. The goal was to emphasize the relevant words more rather than passing the
full paragraph vector to down-stream layers.

e We experimented with a blend of filter layer within the co-attention layer i.e. replace pp
in equation |1| with filtered passage pp/ which emphasizes the important parts of passage
(based on relevancy) and removes redundant parts. A visualization of this implementation
is shown in figure]

filter o
! £
7 layer

4 A

| bi-LSTM [bi-LSTM [bi-LSTM [bi-LSTM [@] bi-LSTM

Figure 4: Architecture of Mixture Model encoder

o Architecture Ensemble: We experimented with an ensemble of two architectures. We used
the logits from the constituent models and added them before applying a softmax layer to
generate the final prediction. This network would then learn the parameters of all con-
stituent models jointly.

Joint parameter-learning appeared computationally inefficient, after running a few iterations. Instead
we found that learning the parameters for constituent models independently and then combining the
predictions gives best results.

3.3 Hyperparameter Tuning

We experimented with various hyperparameters. Tuning is very hard for this problem given the
number of hyperparameters. Table[]lists several choices that were explored in our experiments. We
loaded pre-trained glove embeddings and fine-tuned by allowing them to be “trainable” during the
learning process. We experimented with the choice of adding dropout after the embedding layer.
Intuitively, it seems reasonable to add dropout given the embeddings are “’learn-able” and re-trained
embeddings have a tendency to over-fit leading to loss in generalization.

Batch sizes we tried were 32, 64. We experienced memory issues for larger batch sizes.

Table [2] details some of the experiments that have been performed.

Table 1: List of Hyperparameters

Category Hyperparameter

Embedding Layer Trainable or fixed embeddings

Dropout post-embedding layer

Gigaword (6B) or Common Crawl (840B) corpus
Architecture Choices Number of layers

Type of Layers
Representation Sizes embedding size (100-300)

Istm units (100-200)

perspective units
Regularization Choices dropout ratio (0.2-0.4)

span 11 regularization strength (0.001-0.0001)
Optimization Choices optimizer

max gradient norm (1-10)

learning rate (0.01-0.0001)

epochs run

batch size (32/64)

Table 2: Hyperparameter Tuning Experiments

Model Name Knobs Turned Val F1 Val EM
MPCM Initial Settings 56.21 43
MPCM-fixed Fixed embeddings 49.3 36.4

MPCM-fixed-0.001 Fixed embeddings, span 12 increased to 0.001 50.82 37.38
MPCM-fixed-0.002 Fixed embeddings, span 12 increased to 0.002 50.37 37.64

COATT Initial Settings 61.77 47.56
COATT-fixed Fixed Embeddings 56.95 43.75
COATT-fixed-200 Fixed Embeddings, Increased layer sizes to 200 55 40.65
COATT-fixed-200-mix Added filter layer 56.38 41.74

4 Results And Discussion

Looking deeper into the predictions, we saw some interesting things. Key observations from figures

[5al 5b} [5d|and 5¢;

e The model does well for simple questions like *when’/’who’ and worse as complexity
increases 'why’/’how’ type questions

e The model seems to perform worse as the answer-length increases. Longer answers typi-
cally correspond to more complex questions.

e The model seems to perform surprisingly well across different question and context-
paragraph lengths. We would expect performance to deteriorate for long questions and
long documents.

70

- Fl
EM
60 -
50
40
v
S
2]
301
20 A
104
04
what who how when which where wt 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19
qtype question_length
(a) Performance across question-types (b) Performance across question-lengths
704 - Fl
- EM
60
504
» 40
E ‘6
] @
1% 30 4
204
104
o
75 125 175 225 275 325 375 12 3 456 7 8 91011121314151617 1819
context_length answer_length
(c) Performance across context-lengths (d) Performance across answer-lengths

Figure 5: Performance across different dimensions

4.1 Ablative Analysis

We tried to peel off layers from our architecures to do sensitivity analysis and identify the key
components of the network. Table [3]shows the importance of the filter layer in the MPCM model.

Table 3: Layer Ablation

Model Name ValF1 Val EM

MPCM 57.31 46.00
w/o filter layer 38.20 26.22

Table 4: Performance of models attempted so far

Model Name Description ValF1 ValEM DevFl1l DevEM
SQuAD LR Baseline Logistic Regression w/ hand-crafted features 51.00 40.04
MPCM Multi-perspective context matching 56.21 43.00 57.31 46.00
COATT Co-attention network 61.16 46.97 62.45 51.96
MPCM + COATT Ensemble Our first ensemble 64.21 53.15
Human Crowd-sourced answers 91.221 82.304

4.2 Ensembling Results: Progress Path So Far

We identified several stand-alone weak learners through our tuning experiments and added them to
the ensemble if they cleared a baseline performance threshold. The baseline threshold was set to F1
> 55%.

We notice excellent performance gains by chaining the model predictions into an ensemble-
prediction. The ensemble performance exceeds the performance of best stand-alone model by 5%
F1. Table[5]details the various steps taken so far.

Our final ensemble achieves F1/EM scores of 68.3 /56.9 on dev-set and 69.075 / 57.957 on test-set.

Table 5: Progress of ensemble-models attempted so far

Ensemble Model Name Description DevF1 DevEM
MPCM + COATT First ensemble, initial settings, see 64.2 53.2
MPCM + COATT Tuned COATT 64.34 53.34
MPCM + COATT Make start prediction, force end > start 65.72 54.26
MPCM + COATT + COATT-fixed Added COATT(fixed embeddings, size = 100) 66.5 553
MPCM + COATT + COATT-fixed Joint (start,end) prediction, seeh 66.71 55.4
MPCM + COATT + COATT-fixed + COATT-fixed-200 Added COATT(fixed embeddings, size = 200) 67.51 55.9
MPCM + COATT + COATT-fixed + COATT-fixed-200 Added filter layer to co-attention encoder 68.3 56.9

5 Conclusions
e We have explored and implemented ideas from several stat-of-art papers on question-
answering.

e Our ensembling strategy yields a high performing model compared to any stand-alone
model

e Our model doesn’t get affected by question-length or paragraph-length

e Our model seems to be doing well for low and medium-complexity questions

6 Future Work

e Instead of predicting the start and end index independently we want to try out predicting
(start-index, span-length) or (end-index — start-index). We decided not to try this because
this may be computationally expensive.

e More effective ensembling strategy that effectively utilizes the local bumps in probability
distributions across different models to make the overall span prediction. We could train a
meta-model on the local maxima-minima.

e The current implementation of predicting the optimal span is O(P?). We want to optimize
this step.

Acknowledgments

We would like to thank the instructors Prof. Chris Manning and Prof .Richard Socher for teaching
an excellent course. We would also like to thank the TAs for helping out with questions on Piazza.

References

[1] Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for natural language
sentences. arXiv preprint arXiv:1702.03814, 2017.

[2] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question-answering.
arXiv preprint arXiv:1611.01604, 2016.

[3] Jeftrey Pennington, Richard Socher and Christopher D. Manning. 2014. GloVe: Global Vectors for Word
Representation. Proceedings of ACL, pp. 1532-1543

[4] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer. arXiv
preprint arXiv:1608.07905 , 2016.

10

	Introduction
	Previous Work

	Model Implementation Details
	Multi-Perspective Context Matching
	Paragraph / Question Embedding Layer
	Filter Layer
	Paragraph / Question Representation Layer
	Matching Layer
	Softmax Prediction Layer

	Dynamic Co-attention Networks
	Embedding Layer
	Paragraph / Question Representation Layer
	Co-Attention Layer
	Softmax Layer

	Match-LSTM with Answer-Pointer
	Training
	Test
	Prediction Strategy
	Ensemble Strategy

	Gradient Clipping
	Model Regularization: Dropout

	Experiments
	Initial Settings
	Some Ideas Explored
	Hyperparameter Tuning

	Results And Discussion
	Ablative Analysis
	Ensembling Results: Progress Path So Far

	Conclusions
	Future Work

