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Abstract

Sentiment analysis using deep learning models is a leading subject of interest in
Natural Language Processing that is as powerful as it is opaque. Current state-of-
the-art models can produce accurate predictions, but they provide little insight as
to why the model predicted this sentiment. Businesses relying on these models
might be less likely to act on insight given the lack of evidence for predictions.
These people would be more likely to trust such predictions if a brief explana-
tion of the outcome is provided. Recent work by Lei et al [4]. has set forth a
framework for a multi-aspect sentiment analysis concurrently providing text ra-
tionalization with each prediction. This framework sets forth a two-part approach,
which summarizes a review and predicts a sentiment. In this paper, we explore
the performance of this framework, seeking to recreate and improve upon it in
TensorFlow.

1 Introduction

Many businesses and organizations can find a use for sentiment analysis. Customer reviews can
provide insights on which products are popular and which need to be redesigned. Communications
via email can be scanned to find clients that are dissatisfied with services so that they can be accom-
modated. Current state-of-the-art sentiment analysis models utilize deep learning architectures and
achieve fairly high accuracy when predicting positive or negative sentiment - on the order of 80% to
90% [31.

Unfortunately, with many applications knowing the sentiment of a communication or a review may
not be enough. For a sentiment prediction to be useful, a user may need to know why the model pre-
dicted a specific sentiment. Further, deep learning models are notoriously uninterpretable, lending
to some users not trusting model results, and in some industries and nations, leading to the complete
prohibition of their use [1].

In Rationalizing Neural Predictions [4], Lei et al propose a framework to address this problem. The
first task (generator) provides a rationalization of each rating, selecting a subset of words or phrases
from the original text review. A rationale should be a short but comprehensible summary of a review.
The authors frame this as a semi-unsupervised learning problem, creating a two-layer bidirectional
recurrent neural net (RCNN) which passes over each word in the original text. The resultant vector
is a probability that each word from the original text is selected in the summary text.

These probabilities are used to sample summary text, which is fed into the second task (encoder).
This is a supervised learning task where the sampled summary text is used to predict the sentiment.
The authors used a two-layer RCNN for this task. By forcing ratings to be predicted using only the
rationale of the review and not the review itself, we can jointly train tasks by having the first task
place higher probabilities on words that are relevant to the sentiment. Further, to force rationale
coherency and brevity by adding in a regularization factor that penalizes for selecting too large of a
rationale and for not selecting a small span of words.



“a: it poured a clear orange to copper body with a modest
white head. there was decent layered lacing that lingered
until the beer was gone. s: it was dominated by sweet
moderately toasted malts ...”

Figure 1: Sample Rationale

Lei et al implemented this framework in Theano. We use this framework as an inspiration for our
own implementation in TensorFlow and try to match the author’s sentiment prediction and rationale
results as a baseline. We then experiment with different encoder and generator architectures to see
if we can improve upon our baseline model. We try a LSTM and GRU implementation of both the
encoder and generator. Further, we experiment with forcing a fixed-width coherence and remove the
sparsity and coherency regularization parameters.

2 Related Work

2.1 Framework

Our experiment relied heavily on the work by Lei et al in Rationalizing Neural Predictions [4]. The
paper prescribes a two-part model which predicts a multi-sentiment analysis (called encoder) and
extracts summary phrases (called generator).

The encoder (enc) is a supervised learning problem which predicts a rating given a text review.
Training samples are (x, y) pairs, where z = {x;}L_; is an input text sequence of length T and
y € [0,1]™ is an output vector where m denotes the number of aspects in a review. Loss for the
encoder is calculated using squared error loss:

L(z,y) =9 -yll3 = Il enc(z) —y |13 (1)

The generator (gen) is a text summarization task which selects a subset of words of the text review as
a rationale describing rating. There is no target rationale, but rather both the encoder and generator
are jointly trained. The output of the generator are probabilities of each word in the original review
being selected as part of the rationale. These probabilities are used to sample a z — layer, where
each z; € {0, 1} is an indicator variable for each word in a text sequences indicating if a given word
was chosen as rationale. There is no target rationale, but rather both the encoder and generator are
jointly trained. That is, our final predictions are trained on the rationale output from the generator,
not the full text review. Thus, our final prediction in enc(gen(z,X)).

Since the generator is not trained on labels, we introduce regularization to force the number of words
that are predicted in the z — layer to be small. Further, rationales need to be coherent, so we need
to enforce that words selected are within a range. The authors suggest that we add in a sparsity and
coherency penalization. The final cost is defined as:

T
Cost(z,z,y) = L(z,y) + M || 2 || +X2 Z | 2t — 21 | (2)

t=1

where \| penalizes number of words and )\, penalizes distance between chosen words.

2.2 Expected Cost

The z — layer sampling method is necessary to tractably compute the cost. If we did not sample
from the generator’s probability distribution, we would need to compute the full expected cost.
This would require us realizing all possible sequences of rationales, computing the cost, and then
weighting it by the probability of that specific rational being sampled. For each review of size k, we
would need to realize a total of 2* possible rationales, which is computationally infeasible.



Sampling the z — layer in TensorFlow kills the gradient, which prevents training the generator and
any parameters below the z —layer. To allow training, we calculate binary cross-entropy calculation
between the true probabilities and the predicted probabilities:

H(p,q) = =Y pilogg; = —ylogs— (1 —1y)log(l — 1) 3)
The final cost is Cost(z, x, y) weighted by the cross-entropy term H(p, q).

3 Approach

3.1 TensorFlow Framework

The original model as outlined in Rationalizing Neural Predictions was created in Theano. A main
goal of our project was to recreate this model in TensorFlow. We spent a large portion of time work-
ing to translate Theano code to TensorFlow code line by line. This was a huge learning experience,
as we found that these deep learning platforms have some fundamental differences.

Overall, Theano seems to provide a lower level framework that can be much more effectively and
efficiently wrapped in hand-coded Python numpy operations. Given similar “compile” and “run”
phases of working with a computational graph, both Theano and TensorFlow allow certain com-
parable hacks to print variable values at run time. Also, Theano and Tensorflow have a series of
roughly equivalent functions. However, Tensorflow requires more explicit type specification (so we
used tf.cast() extensively in the in the initial attempt at a Theano to Tensorflow baseline translation)
as well as variable specification.

The authors make extensive use of the theano.scan() function. We studied and replicated
theano.scan() using tf.scan() which was added relatively recently to tensorflow. We found perfor-
mance of tf.scan() was an order of magnitude worse than running theano.scan() on the GPU. At this
point, we decided to start writing our Tensorflow code from scratch.

3.2 Data

3.2.1 Datasets

Consistent with the Lei et al. paper, we use a dataset consisting of 1.5 million reviews from Beer-
Advocate. BeerAdvocate is a user review website of beer, such that reviews are multi-aspect. That
is, reviews are asked to speak to each of five categories describing a beer: look, smell, taste, feel,
and overall. Each rating is on a scale of 0 - 5, inclusive.

In addition to this dataset, there is a small subset of almost 1,000 annotated reviews. Annotated
reviews have a tag for each sentence in the review indicating which aspect the sentence is speaking
to. The model will not train on this data, but instead is used as test data and can be used to calculate
precision of final model.

3.2.2 Preprocessing

In the Lei et al. paper, models are trained separately for each aspect. As a proof of concept, we
choose to model on only one aspect, namely appearance, and drop all other ratings.

Ratings are a continuous value between 0 and 5, thus we are solving
a regression problem. We normalize output to [0, 1] values, allow-
ing us to use a final layer which predicts values between O and 1,
such as sigmoid or tanh.

Review lengt bins)

As is common in deep learning, we use word embeddings to rep- |
resent each word in our text. We begin using a 200-dimensional
word embedding trained on Wikipedia 2014 data using the GloVe
algorithm.




The maximum review length in our dataset was 1,145 words, how-
ever the average review length is around 200 words. Adding
padding of this length greatly slowed down the model. We chose
to clip reviews to 300 words to speed up processing time.

3.3 Model

In this section, we outline the various components used in our model.

3.3.1 RNNs

A recurrent neural network (RNN) is a model which conditions on all previous words, making it
very useful when working with sequential data. At each step, the next word in the text is fed into a
hidden layer, along with the output from the previous hidden layer. Final output is then computed
from the hidden state.

In the encoding task of our model, we use a two-layer stacked RNN. The model is as follows:

Bl = fi(Wiat + Uit +by) 4)
b= fa(Wahl + Ushl™ + by) )
g = f3(R[h] : h3] + bs) (6)

where x! denotes input word at time t, hf denotes a hidden state at time t, and ¢ denotes output.
Note ¢ is only calculated at time T, where T is the length of each rating.

As a baseline, we implement the above model using tanh for all activation functions. Results for
experimentation are described below.

3.3.2 Bidirectional RNNs

Bidirectional RNNs are used when both previous and future words are useful for determining output.
At each layer, the input is fed into two hidden states, one which is fed forward through time steps
and the other which is fed backward.

W= (Wt + TR+ 1) %
W= fQ(Wxt LU R ?) (8)
= fo(RET R +0) ©)

where variables with — denote inputs moving left to right and < denote inputs moving right to left.

Similar to the stacked RNN, we use tanh as an activation function and experiment with various other
activations.

3.3.3 Vanishing and Exploding Gradients

Vanishing and exploding gradients are common occurrences in deep learning. As gradients are back-
propagated through time steps, we are continuously multiplying by the gradients of the weights and
biases of each layer. When these values are small, the gradient of a layer many time steps back
will approach zero and thus never update. Alternatively, if these values are large, we will see an
exploding gradient.

GRUs

Vanishing Gradients can often be solved using Gated Recurrent Units (GRU). GRUs are an update
to RNN activation units which capture long-term dependencies.



2 = U(W(Z)xt + U(Z)ht_1) (10)

re =Wz, + UMhy_y) (11)
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The biggest change to this cell is r, the reset gate. The reset gate determines how much of past
memory (h;_1) tp pass along to the next state.

LSTMs

A modification of the GRU is a Long-Short-Term-Memories (LSTMs). Within a hidden unit, the
LSTM has an input gate [eq (14)], which controls which words can be passed into the unit and an
output gate [eq (15)], which controls how much of the memory can affect the next hidden state.

it = oWz, + UDhy_y) (14)
ft = O'(W(f)l’t + U(f)ht_l) (15)
Ot = O'(W(O)It + U(O)ht_l) (16)
¢ = tanh(W Oz, + U@ h,_y) (17)
ct=froc_1+i0¢ (18)

hy = o4 o tanh(cy) (19)

Gradient Clipping

Exploding gradients can be solved using a technique called gradient clipping. Each time the gradient
surpasses a set threshold, we reset the gradient to a given upper or lower bound. Specifically, we
used bounds if 1, -1 (upper, lower).

3.3.4 Adam Optimization

We chose to use Adam optimization [2] in our model, which is a more complex update method as
compared to Stochastic Gradient Descent. Over each batch of data, we update parameters using
algorithm:

m < Bym + (1 — B1)VaJy (20)
v Bov+ (1 — B2)VeJi 21)
0« 0—aomh/v (22)

We keep a rolling average of the first and second moments. The first moment, m, will prevent
the gradient from varying too much. The second moment, v, helps update parameters with small
gradients to speed learning.

4 Experiments

4.1 Initial Approach

As a baseline, we sought to re-create the model proposed by Lei, et al. in TensorFlow. We imple-
mented a model with a two-layer stacked bi-directional RNN generator and a two-layer stacked RNN
encoder. Training mean squared error (MSE) decreased gradually; however, after 10 or so epochs
our MSE spiked. This behavior indicates an exploding gradient, solved using gradient clipping with
bounds [-1, 1].



After this fix, the model produced MSE results consistent with the paper but with poor precision.
Calculating the norm of each gradient, we were able to detect a vanishing gradient issue. When
sampling words from the generator output, we are creating a break in our model graph and can no
longer back propagate the gradient past this layer. Interestingly, the method used by the paper’s
authors to fix this issue (weighting cost by cross-entry), had no effect on our model.

In figure 1, we can see all models achieve a low test MSE, even when the generator is not training.
This is likely because all aspects are highly correlated. If we choose a random subset of words
which do not pertain to the aspect we are focusing on, we will still reduce MSE but score poorly on
precision.

We note that if we were to randomly select words for rationales across our test data, our expected
precision would be approximately 18%. The RNN and LSTM with out sampleing approximation
have precision around this random selection, which is a sign that our generator is not training and
not selecting good rationales. However, when we do sample, we see that we beat a random sample
approach, with our best model performing at 54% precision.

Model Test MSE Precision  Avg Words Chosen
RNN 0.0097 0.1742 69.98
LSTM 0.0099 0.1833 63.18
RNN w/ Sampling Approx 0.0093 0.5472 15.00
LSTM w/ Sampling Approx 0.0142 0.3471 36.02
GRU w/ Sampling Approx 0.0145 0.3454 31.27

Figure 2: Model Results

4.2 Sigmoid Sampling Approximation

We were ultimately able to solve this problem using a sigmoid function to approximate sampling.
By adding a large o parameter to the function, we create a steep sigmoid curve which pushes values
toward O and 1. Data is centered so probabilities above 0.5 are chosen and those below are not.

z=ocf{a(p(z | z)—0.5)} (23)

Choosing an oo = 60 was still a differentiable function and weights in the generator were able to
train. However, we continue to be open to other better Tensorflow-based approaches to achieving
this same result.

4.3 Experimenting with Cells

We performed experiments using RNN, LSTM, and GRU cells. We believed that LSTM or GRU
models would outperform the RNN model because of their ability to understand long-term depen-
dences. This hypothesis was incorrect; the RNN achieved the best results in both mse and precision
(see figure 2). This result makes sense, because perhaps we do not need as long-term of a memory as
we had originally assumed. The average length of each review is 300 words, but the average number
of words in a review which pertain to a given aspect is only 20 words.

s
MSE
MSE

Epocn Epoch epoch

(a) LSTM (b) RNN (c) GRU

Figure 3: Learning Curves for Models with Sampling Approximation



The charts in figure 3 show learning rate for each cell in our ex-

periment. All models stop learning after few epochs. This is likely =
because parameters are not tuned, as we ran out of time at the end ) "
of the project. e

On the right, precision plotted by average number of words chosen N
as rationale for each review is shown. We see that precision in- ‘

creases as the number of words chosen decreases. We see the best o s
precision when about 15 words are chosen as rationale.

4.4 Rationales of Best Model

Visual inspection of rationales on our best model show that we are generally extracting words and
phrases that pertain to the desired sentiment. However, we notice that we sometimes select sporadic
words which may pertain to the aspect, but are not coherent (see figure 1 - Sample Rationale). This
could be signs that we have not tuned our coherency and sparsity regularization parameters well. In
the future, we would like to experiment more with these parameters.

4.5 Precision per Epoch

To get a better understanding of how our model was learning to pre-

dict rationales, we trained our RNN model and evaluated extracted

rationale precision per epoch. We noticed while training that pre-

cision remained stagnant for a number of epochs and appeared to

“jump” to higher values as training proceeded. These jumps also
come at the price of higher MSE in our development predictions.

Val

There are a couple of explanations for this behavior. Our approxi- |

mate rounding function that allows parameter training and sparsity

and coherency regularization is very sensitive to z — layer proba-

bilities differing from 0.5. Probabilities that are slightly above 0.5

are rapidly pushed towards 1 while those less than 0.5 are pushed towards 0. Given we randomly
initialize our generator parameters such that most our initial z — probabilities, and thus z — layer
predictions are random in the first forward propagation, we train the encoder parameters on a random
selection of words. It is unclear how much of the error in the back propagation affects the generator
parameters, but assuming moderate changes, we believe that it is unlikely that the z — layer pre-
dictions are changing that frequently. This means we train our encoder on roughly the same subset
of words for the first few epochs. Given the cliff between being selected in a rationale or not, we
believe that the jump in precision may come from after sufficient training causes a switch in the
number of generator parameters, causing our generator to fundamentally select different words that
are passed into the encoder. This would have the ability to provide better precision as we may be
selecting better words for our rationale. However, our encoder was training on a different subset of
words this whole time, so it is not necessarily optimized for this new subset of words, which may
cause our development MSE to increase and then subsequently decrease as our encoder trains better
to the new subset.

Given random parameter initialization and the fact that our sampling is very inhospitable to pre-
dictions even slightly below 0.5, we recognize that it may be difficult for our generator to get out
of local minima. To this extent, it may be better to decrease our sampling threshold (say take all
rationales that are above probability 0.3) so we can sample more words. Also, we may want to try an
ensemble approach where we train a couple models with random initialization and explore various
model minima.

Another possibility for this phenomena is that over time our sparsity and coherence regularization
becomes a dominant factor in our cost. The regularization that wants to keep the number of predic-
tions in our z — [ayer small can dominate, forcing our generator to pick fewer and fewer words. This
would cause our precision to jump because we would be making fewer erroneous predictions. How-
ever, the fewer overall predictions could make our encoder perform worse as it has less information
to make a prediction, which would also explain the increase in MSE.



4.6 TensorFlow Sampling

As discussed briefly above, the most significant challenge we faced was an attempt in TensorFlow to
pass a gradient through a sample. The framework for producing rationales (excerpts from reviews)
is based on selecting subsets of words (a sample) that best predicts sentiment for a specific aspect
while also attempting to minimize weights related to sparsity (fewer words selected) and coherence
(words close together). The authors do not seem to have gradient passing challenge in Theano. He
simply uses:

theano.disconnected_gradient ()

However, in TensorFlow any casting to boolean or integer or even rounding a float kills the propa-
gation of the gradient. Further, we found that weighting cost by cross-entropy term had no effect on
saving the gradient. Digging into this issue required us to build a separate minimal back propagation
example and try many different approaches. The approach which was ultimately sucessful was the
sigmoid sampling approximation.

4.6.1 Word Span Rationale Selection

We first attempted to remove the need for sampling words by instead selecting the best fixed-length
word span over the entire review. First, we defined a fixed span length of 10, however this would
better be served as a tunable parameter. Next, we iterate over each element in the review as the
starting point, capturing all words in the window. We choose the span which minimized mse.

This method would require computing an expected cost, but would require us to realize far fewer
rationales than if our previous method of allowing each word according to a probability. For a
review of length &, this would require O(k) rationale and cost computations (as compared to the
O(2%) computations with each word being a binary choice). Despite these savings, preliminary
experiments took a prohibitively long time. We estimate that it would take approximately 10 hours
to complete a single epoch. Due to the prohibitive time cost, we abondoned this methodology.

5 Conclusion and Next Steps

We were very quickly able to achieve a low MSE with any model we experimented with, suggesting
that such a complex model isn’t needed to predict rating. However, achieving a high precision was
a much harder task. Choosing a random subset of words across a review provides an expected
precision of 18%. Our best model achieves precision of 3 times this random value, 54%.

Using TensorFlow for deep learning has a very steep learning curve. We spent much of our time
building out the basic components of our model. In the future, we would like to continually build
upon the model that we have created. If we had more time, we would like to focus on parameter
tuning and experimenting with other deep learning architectures, such as convolution neural nets.

Sample rationales are promising in that they appear to be selecting words from reviews that refer
to appearance qualities. However, qualitative review of rationales exposes that selections are not as
coherent as desired. As mentioned in the Precision per Epoch section, we believe that this may be
caused by our stringent sampling procedure causing our generator to get stuck in local minimum,
or it could be due to our sparsity regularization parameter dominating our coherency regularization
parameter. An imbalance between sparsity and coherency means we could prefer sparse predictions
over coherent ones. For next steps, we would really like to tune our sampling cutoff and our sparsity
and coherency regularization. Further, we believe that creating an ensemble model may help with
prediction as we can explore various local minimums.

We believe that this framework could be incredibly useful in the medical field. Doctors may be
unwilling to trust a machine prediction of an x-ray. However, if we could extract a rationale for
classification diagnoses of image from existing medical notes or records, such technology may be
more easy adopted. We hope to continue to explore such applications in further projects next quarter.
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