
Codalab Username: aaronlwy

Implementation of Multi -Perspective Context

Matching for Machine Comprehension

Aaron Loh
Department of Computer Science

Stanford University
Stanford, CA 94305

aaronlwy@stanford.edu

Abstract

This is an implementation of the Multi-Perspective Context Matching for
Machine Comprehension Model as established by Zhiguo Wang, Haitao Mi,
Wael Hamza and Radu Florian of IBM, with a few changes. This model
consists of 6 layers, the Word Representation Layer, for which I use Glove
Vectors, the filter layer, context representation layer, multi -perspective
context matching layer, aggregation layer, and prediction layer. This model
aims to predict the span of words in a context paragraph that can answer a
particular question. To train and evaluate my implementation of the model, I
used the SQuAD dataset.

1 Introduction

1 .1 Ta s k Def i n i t io n

The problem definition is as follows. Given a passage P with N words (p1…pN), and a question
Q with M words (q1….qM), predict a span in the passage P [pstart…pend] that will answer the
question Q. In this model, instead of predicting a span, we will instead predict the boundary
of the span, that is, the starting and ending indices. We will denote the index of pstart as as and
the index of pend as ae.

We can model this as 2 separate classification problems with N classes. The first classification
will be for the start word, and the second classification will be the end word. That is, we will
have 2 probability distributions over N classes, with the first probability distribution telling
us which class (or context paragraph position) the start word will be in, and the second telling
us which class the end word will be in.

In mathematical terms, we choose

𝑎𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑎𝑠|𝑞, 𝑝)

And

𝑎𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑎𝑒|𝑞, 𝑝)

We further enforce the constraint that 𝑎𝑠 < 𝑎𝑒. One way of doing this is to simply choose 𝑎𝑠
first, and then only consider the indexes after 𝑎𝑠 when selecting 𝑎𝑒. Another way is to
maximize over all pairs of 𝑎𝑠 and 𝑎𝑒 where the condition holds. Assuming independence in
the predictions of the start and the end probabilities, we can write this as

[𝑎𝑠, 𝑎𝑒] = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑠,𝑎𝑒
 𝑃(𝑎𝑠|𝑞, 𝑝)𝑃(𝑎𝑒|𝑞, 𝑝)

where 𝑎𝑠 < 𝑎𝑒.

Codalab Username: aaronlwy

2 Background/Related Work

Other than this model implemented by Wang et al., multiple teams have attempted this
problem. A few of the other papers I looked at include the Dynamic Coattention Networks
model proposed by Xiong et al. of Salesforce Research, which iterated over potential answer
spans, and attaining a F1 score of 80.4% in an ensemble [2]. Their model performed well as it
was able to recover from initial local maxima.

Another relevant paper was submitted by Shuohang Wang and Jing Jiang of Singapore
Management University, where they attempted the task using Match-LSTM and answer pointer
[3]. Match LSTM would use an attention mechanism to create a weighted representation of
the question, which they then combined with the vector representation of the paragraph
representation at a particular time step, to make the prediction. Their model was able to get a
F1 Score of 71.2%.

3 Approach

3 .1 Prepro cess ing

I implemented the model from scratch, first loading and pruning the training and validation
data sets for consumption by the model. I first gathered summary statistics about the training
and validation data sets, and found that very few of them had answers past the 200th token. In
order to increase the predictive power of my model, I thus removed the few examples that had
answer spans past that point, and only predicted answers within the first 200 positions. This
allowed the model to have greater predictive power over a shorter span of paragraph, at the
risk of overfitting to the training data.

I further implemented padding and masking so that the length of inputs for the questions and
the contexts would be the same across the board.

3 .2 B ui ld ing a B a se l ine

I first implemented a simple baseline in order to ensure the architecture was sound. The
baseline encoded the question and passage word embeddings using a bidirectional LSTM, and
then used a feed forward mechanism to make predictions. The equations for the predictions
were as follows:

𝑎𝑠 = ℎ𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑊𝑠𝑡𝑎𝑟𝑡𝐶𝑜𝑛𝑡𝑒𝑥𝑡 + ℎ𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑊𝑠𝑡𝑎𝑟𝑡𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛

𝑎𝑒 = ℎ𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑊𝑒𝑛𝑑𝐶𝑜𝑛𝑡𝑒𝑥𝑡 + ℎ𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑊𝑒𝑛𝑑𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛

Here, ℎ𝑐𝑜𝑛𝑡𝑒𝑥𝑡 refers to the last hidden state of the context after passing it through a BiLSTM,
while ℎ𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛 refers to that of the question. This simple model was able to get me up to 5%

F1 on the validation set, after just training on a small sample of training examples.

3 .3 B ui ld ing the Multi Perspective Context Matching Model

I implemented all parts of the original model, with slight changes to the Multi Perspective
Context Matching Layer. In total, there are 6 layers, the word representation layer, given by
Glove Word Embeddings, the filter layer, the context representation layer, the multi
perspective context matching layer, the aggregation layer and the prediction layer. Here is the
schematic from the original paper:

Codalab Username: aaronlwy

Figure 1. Architecture for Multi Perspective Context Matching Model. [1]

3 .3 .1 Wo rd Representa t io n La y er

The word representation I used for the passage and question embeddings came from the 100
dimensional GloVe word vectors provided.

3 .3 .2 Fi l t er La y er

Intuitively, this layer serves to enhance the parts of the passage that are more relevant to the
passage, with relevancy calculated by the cosine distance between vectors in the passage and
vectors in the question. The relevancy matrix for a single example can be calculated using the
following equations:

𝑅 = 𝑄𝑃𝑇

In this case, Q and P represent the normalized word embeddings. Q is of dimension Max
Question Length x Embedding Size, while P is transposed so that it is of Embedding Size,
Max Context Length. Multiplying these two matrices will get is relevancy matrix for that
example. To get the relevancy factor, we simply take the max along the Question Length
dimension, which will then let us scale the context vectors appropriately through a simple
element wise multiplication.

3 .3 .3 Co ntext Representa t io n La y er

This layer takes the filtered passage representation, referred to as 𝑃′ from the previous layer
as well as the question representation Q, and runs them through a Bidirectional LSTM. We use
the final hidden states of both the forward and backward direction as the representation for the
passage and the question.

For each position i in the question, we calculate the forward direction hidden state:s

ℎ𝑖
⃗⃗ ⃗ = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ℎ𝑖−1

𝑝
, 𝑞𝑖)

As well as the backward direction hidden state:

ℎ𝑖
⃖⃗⃗⃗ = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (ℎ𝑖+1

𝑝
, 𝑞𝑖)

We use the concatenated hidden states [ℎ𝑖
⃗⃗ ⃗; ℎ𝑖

⃖⃗⃗⃗] as the representation for the question.

Similarly, for each position j in the context, we calculate the forward direction hidden states

Codalab Username: aaronlwy

ℎ𝑗
⃗⃗ ⃗ = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(ℎ𝑗−1

𝑝
, 𝑝𝑗)

As well as the backward direction hidden state:

ℎ𝑗
⃖⃗⃗⃗ = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (ℎ𝑗+1

𝑝
, 𝑝𝑗)

We use the concatenated hidden states [ℎ𝑗
⃗⃗ ⃗; ℎ𝑗

⃖⃗⃗⃗] as the representation for the context.

3 .3 . 4 M ult i -Perspec t iv e Co ntext M a tch ing La y er

In the original paper, they used this layer to compare each representation of the context from
the previous layer to each representation of the question.

We first define the function

𝒎 = 𝑓𝑚(𝑣1, 𝑣2,𝑊)

This function produces a 𝑙 dimensional vector, where 𝑙 corresponds to the number of
perspectives. In our case, 𝑣1 and 𝑣2 are vectors of size 2𝐻, where H is the size of our hidden
state. 𝑣1 corresponds to a passage vector at a particular timestep, while 𝑣2 corresponds to a

question vector at a particular timestep. Our matrix is given by 𝑊 ∈ ℝ𝑙×2𝐻. With these
parameters, we can calculate each index 𝑘 of the 𝒎 using the following formula:

𝑚𝑘 = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑊𝑘 ∘ 𝒗𝟏,𝑊𝒌 ∘ 𝑣2)

Where 𝑐𝑜𝑠𝑖𝑛𝑒 is calculates the cosine distance between the two vectors. 𝑊𝑘 marks the
𝑘𝑡ℎ layer of the matrix W.

I implemented the three matching schemes in the paper, full matching, max pooling matching,
and mean pooling matching.

3 .3 .4 .1 Ful l M a tch ing

In full matching, we compare the representation of the context at each time step from the
context representation layer with the final hidden state of the question. In the original model,
they broke this up into two portions. For each index j of the context representation, from 1…N,
they calculated

𝑚𝑗⃗⃗ ⃗⃗
𝑓𝑢𝑙𝑙

= 𝑓𝑚(ℎ⃗ 𝑗
𝑝
, ℎ⃗ 𝑀

𝑞
;𝑊1)

𝑚𝑗⃖⃗ ⃗⃗ ⃗
𝑓𝑢𝑙𝑙

= 𝑓𝑚(ℎ⃖⃗𝑗
𝑝
, ℎ⃖⃗1

𝑞
;𝑊2)

Instead of splitting this up into two parts, I decided to use the concatenated hidden vectors
from both the backwards and forwards direction together, to capture more of the interactions
between the two directions. That is, I calculated

𝑚𝑗
𝑓𝑢𝑙𝑙

= 𝑓𝑚([ℎ⃗ 𝑗
𝑝
; ℎ⃖⃗𝑗

𝑝
], [ℎ⃗ 𝑀

𝑞
; ℎ⃖⃗1

𝑞
];𝑊3)

3 .3 .4 .1 M a x Po o l ing M a tch ing

This follows a similar idea as the previous matching, but instead of just comparing the context
representation at each index j from 1 to N with the last hidden state of the question
representation, we now compare it with the question representation at each timestep, from 1
to M. For a particular context vector at position j, we then set the value of the 𝑙th dimension
to be the maximum value taken across the dimension for the question representation. Once
again, in the original model, this was represented as

𝑚𝑗⃗⃗ ⃗⃗
𝑚𝑎𝑥

= max
𝑖∈(1…𝑀)

𝑓𝑚(ℎ⃗ 𝑗
𝑝
, ℎ⃗ 𝑖

𝑞
;𝑊4)

𝑚𝑗⃖⃗ ⃗⃗ ⃗
𝑚𝑎𝑥

= max
𝑖∈(1…𝑀)

𝑓𝑚(ℎ⃖⃗𝑗
𝑝
, ℎ⃖⃗𝑖

𝑞
;𝑊5)

For my model, I used this to calculate the max pooling vector:

Codalab Username: aaronlwy

𝑚𝑗
𝑚𝑎𝑥 = max

𝑖∈(1…𝑀)
𝑓𝑚([ℎ⃗ 𝑗

𝑝
; ℎ⃖⃗𝑖

𝑝
], [ℎ⃗ 𝑀

𝑞
; ℎ⃖⃗𝑖

𝑞
];𝑊6)

This may cause the model to lose some degrees of freedom, as now the same index i has to be
selected so that it maximizes across the backwards and forwards representation of the question.

3 .3 .4 .1 M ea n Po o l ing M a tch ing

This is almost the same as the max pooling layer, but instead of taking the maximum across
the question dimension, we take the mean. For my model, I used this to calculate the mean
pooling vector:

𝑚𝑗
𝑚𝑒𝑎𝑛 =

1

𝑀
∑𝑓𝑚([ℎ⃗ 𝑗

𝑝
; ℎ⃖⃗𝑖

𝑝
], [ℎ⃗ 𝑀

𝑞
; ℎ⃖⃗𝑖

𝑞
];𝑊9)

𝑀

𝑖=1

My final mixed representation of the context and the question, that is, the output of this layer,
is simply the concatenated vectors

[𝑚𝑗
𝑓𝑢𝑙𝑙

; 𝑚𝑗
𝑚𝑎𝑥; 𝑚𝑗

𝑚𝑒𝑎𝑛]

3 .3 .5 Agg rega t io n La yer

This layer passes the vectors from the previous layer through another BiLSTM.

3 .3 .5 Pred ic t io n La y er

I use a simple feed forward network to generate the predictions. That is, for the aggregated
vectors 𝑉, each of size Max Length Context by 2𝐻, I would do the following:

𝐴𝑠𝑡𝑎𝑟𝑡 = 𝑉𝑊𝑠𝑡𝑎𝑟𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑒𝑛𝑑 = 𝑉𝑊𝑒𝑛𝑑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

I would then pass it through a softmax to calculate the probabilities for each word position
being the starting and the ending, and then apply the cross-entropy loss to train the model.

4 Experiments

4 .1 Da ta

I used data from the SQuAD dataset. Unfortunately, due to time limitations and low GPU
utilization, I was only able to train the model for 1 epoch. Furthermore, I was unable to train
it on all the examples at once due to the GPU running out of memory. I thus applied random
selection over the examples so as to prevent overfitting to a small dataset, saving the weights
at each iteration. Given more time, and better efficiency I would run the model on the full
dataset across all the epochs. The validation dataset was similarly extracted from the SQuAD
dataset.

4 .2 Hy perpa ra meters

Here are the hyperparameters that I used for training this model:

Table 1: Hyperparameters

Hyperparameter

H (State Size) 50

Learning Rate 0.1

GloVe Word 100

Codalab Username: aaronlwy

Embeddings

Maximum
Gradient Norm

10

Optimizer Gradient Descent Optimizer

L (number of
perspectives)

50

Unfortunately, these were mostly chosen due to hardware constraints, notably, memory size
of the GPU, rather than actual performance reasons. A hyperparameter search would be useful
for increasing the performance of the model, given more time.

4 .3 Ev a lua t io n

For evaluation, at each epoch, I calculated the loss, F1, EM scores for both the training and
validation set. The training set was used as a sanity check to see that the loss was indeed going
down and the F1 and EM scores were increasing. The validation set was used as a metric to
see if the model could generalize to unseen data. Lastly, I tested the model on the dev set, once
again, using the F1 and EM scores as a metric.

4 .4 Resul t s

These are the F1 and EM Scores after 1.5 Epochs, evaluated on the Validation, Development,

and Test Sets. Due to time constraints and low utilization of the GPU, I was only able to

train for 1.5 Epochs. At the point of writing, the train F1 was 21.1% and increasing, evidence

that the model was still learning.

Table 2: F1/EM Results after 1.5 Epochs

 F1 Score EM Score

Validation 19.2% 9%

Development 13.42% 5.421%

Test 14.003% 5.518%

4 .4 Ana ly s i s

The first thing to note is that while the model did not converge in 1.5 Epochs, as was to be
expected, there was a general upward trend in the performance across the epoch, as I trained
on more and more examples. At every 1000 examples or so, I evaluated on the training set as
well as a random sample of 100 examples from the validations set.

Fig 2: F1 Across 1 Epoch

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80

V
a

li
d

a
ti

o
n

 F
1

 S
co

re

Training Examples (thousands) Across 1
Epoch

Series1 Linear (Series1)

Codalab Username: aaronlwy

Fig 3: EM Across 1 Epoch

We see that the model does improve with more examples, with the improvement in F1 being
more marked as compared to the improvement in the EM score. This was accompanied by a
decrease in the training and validation cost as well. In order to speed up the learning, in
future iterations, I would experiment with larger learning rates, especially in the first epoch,
and perhaps use an adaptive gradient descent algorithm with annealing across the epochs to
help the model converge.

I also found that the model was greatly affected by the length of the context, as well as the
answer. In general, there was a downward trend for both F1 and EM as the context length
increased. Interestingly enough, there was a spike in performance for context lengths around
270. Possible reasons may include having seen more examples in that range, although it
could also be random. It is also interesting that the model does not perform as well in the
opposite extreme, when the context length is very short.

Fig 4: F1/EM for different context lengths in validation set

Fig 5: F1/EM for different answer lengths in validation set

0

0.02

0.04

0.06

0.08

0 20 40 60 80

V
a

li
d

a
ti

o
n

 E
M

 S
co

re
Training Examples (thousands) Across 1

Epoch

Series1 Linear (Series1)

0

0.05

0.1

0.15

30 60 90 120 150 180 210 240 270 300 330 360

F1/EM for different Context
Lengths

F1 EM

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10

F1/EM for different Answer
Lengths

F1 EM

Codalab Username: aaronlwy

The model also performs better for short answer spans, with the EM score decreasing
sharply when the span is more than 3.

Fig 6: F1/EM for different question types

For the reasons above, the model performs much better for questions that have a simple
concise answer, such as questions starting with “how many”, as opposed to open ended
questions like “how did”. This is consistent with the findings of the original paper, where the
“how did” questions received the lowest F1 and EM scores.

In appendix A, we see an example of an exact match where the answer is to predict when a
certain event happened, the correct answer being “1913”. We see that in this case the model
is able to identify the right answer, with probabilities near the answer being close to 0, while
there is a spike at the correct position. The model is able to handle such cases with an answer
span of 1 well.

5 Conclusion

As far as implementation goes, I have learned about how to set up a neural network model
from scratch, from loading and parsing the data, to setting up the TensorFlow graph and its
operations, setting up the encoder and decoder, to training the model and evaluating it. I have
also learned how important it is to use the hardware fully. Due to the long training time,
training on the CPU was an intractable task, and not being able to fully utilize the GPU was a
big roadblock for me.

The first step to improving the performance of my model is definitely to try to get the GPU to
have a higher utilization so that I can train the model on more data. Running the model on the
full dataset over 10 epochs would likely give it a performance boost. I would also increase
some of the parameters such as the hidden state size as well as the number of perspectives, as
the increase parameter space would allow the model to adapt to more situations. I would also
like to use tools like dropout, learning rate annealing, as well as adaptive optimizers, instead
of just a gradient descent optimizer.

Beyond that, I would look into different models other than the boundary model, to see if that
would increase performance. For instance, one possible method of prediction would be to
classify each passage position as either part of the answer or not part of the answer. Then, an
identification of the answer span could be done by finding a subsequence that maximizes the
number of predicted answer words while minimizing the number of non-answer words.

Ac kno w ledg me nts

I would like to thank Professor Christopher Manning and Professor Richard Socher, as well as
the TAs of CS 224N for their support throughout this project.

0

0.05

0.1

0.15

0.2

0.25

0.3

how
many

in what what is where is what did how did

F1/EM for Question Type

f1 em

Codalab Username: aaronlwy

Appen dix A

Fig 7: Start Probability Example For Exact Match

Fig 8: End Probability Example For Exact Match

References

[1] Zhiguo Wang, Haitao Mi, Wael Hamza, Radu Florian (2016) Multi-Perspective Context Matching
for Machine Comprehension. arXiv:1612.04211

[2] Caiming Xiong, Victor Zhong, Richard Socher (2017) Dynamic Coattention Networks for Question
Answering. arXiv:1611.01604

[3] Shuohang Wang, Jing Jiang (2016) Machine Comprehension using Match-LSTM and Answer Pointer
arXiv:1608.07905

0
1
2
3
4
5
6

T
h

e

fi
rs

t

m
o

d
er

n

E
gy

p
ti

an

N
o

v
el

Z
ay

n
ab b

y

M
u

h
am

m
ad

H
u

sa
y

n

H
ay

k
al

w
as

p
u

b
li

sh
ed in

1
9

1
3 in

th
e

E
gy

p
ti

an

v
er

n
ac

u
la

r

Unscaled Start Probabilities

-4.00E+00

-2.00E+00

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

T
h

e
fi

rs
t

m
o

d
er

n
E

gy
p

ti
an

N
o

v
el

Z
ay

n
ab b

y
M

u
h

am
m

ad
H

u
sa

y
n

H
ay

k
al

w
as

p
u

b
li

sh
ed in

1
9

1
3 in

th
e

E
gy

p
ti

an
v

er
n

ac
u

la
r

Unscaled End Probabilities

