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Abstract 

This is an implementation of the Multi-Perspective Context Matching for 
Machine Comprehension Model as established by Zhiguo Wang, Haitao Mi, 
Wael Hamza and Radu Florian of IBM, with a few changes. This model 
consists of 6 layers, the Word Representation Layer, for which I use Glove 
Vectors, the filter layer, context representation layer, multi -perspective 
context matching layer, aggregation layer, and prediction layer.  This model 
aims to predict the span of words in a context paragraph that can answer a 
particular question. To train and evaluate my implementation of the model, I 
used the SQuAD dataset. 

 

1  Introduction  
 

1 .1  Ta s k Def i n i t io n  

The problem definition is as follows. Given a passage P with N words (p1…pN), and a question 
Q with M words (q1….qM), predict a span in the passage P [pstart…pend] that will answer the 
question Q. In this model, instead of predicting a span, we will instead predict the boundary 
of the span, that is, the starting and ending indices. We will denote the index of pstart as as and 
the index of pend as ae. 

We can model this as 2 separate classification problems with N classes. The first classification 
will be for the start word, and the second classification will be the end word.  That is, we will 
have 2 probability distributions over N classes, with the first probability distribution telling 
us which class (or context paragraph position) the start word will be in, and the second telling 
us which class the end word will be in.  

In mathematical terms, we choose 

𝑎𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑎𝑠|𝑞, 𝑝) 

And  

𝑎𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑎𝑒|𝑞, 𝑝) 

We further enforce the constraint that 𝑎𝑠 < 𝑎𝑒. One way of doing this is to simply choose 𝑎𝑠 
first, and then only consider the indexes after 𝑎𝑠 when selecting 𝑎𝑒. Another way is to 
maximize over all pairs of 𝑎𝑠 and 𝑎𝑒 where the condition holds. Assuming independence in 
the predictions of the start and the end probabilities, we can write this as  

[𝑎𝑠, 𝑎𝑒] = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑠,𝑎𝑒
 𝑃(𝑎𝑠|𝑞, 𝑝)𝑃(𝑎𝑒|𝑞, 𝑝) 

where 𝑎𝑠 < 𝑎𝑒.  
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2  Background/Related Work  

Other than this model implemented by Wang et al., multiple teams have attempted this 
problem. A few of the other papers I looked at include the Dynamic Coattention Networks 
model proposed by Xiong et al. of Salesforce Research, which iterated over potential answer 
spans, and attaining a F1 score of 80.4% in an ensemble [2]. Their model performed well as it 
was able to recover from initial local maxima.  

Another relevant paper was submitted by Shuohang Wang and Jing Jiang of  Singapore 
Management University, where they attempted the task using Match-LSTM and answer pointer 
[3]. Match LSTM would use an attention mechanism to create a weighted representation of 
the question, which they then combined with the vector representation of the paragraph 
representation at a particular time step, to make the prediction. Their model was able to get a 
F1 Score of 71.2%. 

 

3  Approach  

 

3 .1  Prepro cess ing  

I implemented the model from scratch, first loading and pruning the training and validation 
data sets for consumption by the model. I first gathered summary statistics about the training 
and validation data sets, and found that very few of them had answers past the 200th token. In 
order to increase the predictive power of my model, I thus removed the few examples that had 
answer spans past that point, and only predicted answers within the first 200 positions. This 
allowed the model to have greater predictive power over a shorter span of paragraph, at the 
risk of overfitting to the training data.  

I further implemented padding and masking so that the length of inputs for the questions and 
the contexts would be the same across the board.  

 

3 .2  B ui ld ing  a  B a se l ine  

I first implemented a simple baseline in order to ensure the architecture was sound. The 
baseline encoded the question and passage word embeddings using a bidirectional LSTM, and 
then used a feed forward mechanism to make predictions. The equations for the predictions 
were as follows: 

𝑎𝑠 = ℎ𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑊𝑠𝑡𝑎𝑟𝑡𝐶𝑜𝑛𝑡𝑒𝑥𝑡 + ℎ𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑊𝑠𝑡𝑎𝑟𝑡𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛  

𝑎𝑒 = ℎ𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑊𝑒𝑛𝑑𝐶𝑜𝑛𝑡𝑒𝑥𝑡 + ℎ𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑊𝑒𝑛𝑑𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛  

Here, ℎ𝑐𝑜𝑛𝑡𝑒𝑥𝑡  refers to the last hidden state of the context after passing it through a BiLSTM, 
while ℎ𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛 refers to that of the question. This simple model was able to get me up to 5% 

F1 on the validation set, after just training on a small sample of training examples. 

 

3 .3  B ui ld ing  the  Multi Perspective Context Matching Model 

I implemented all parts of the original model, with slight changes to the Multi Perspective 
Context Matching Layer. In total, there are 6 layers, the word representation layer, given by 
Glove Word Embeddings, the filter layer, the context representation layer, the multi 
perspective context matching layer, the aggregation layer and the prediction layer.  Here is the 
schematic from the original paper: 
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Figure 1. Architecture for Multi Perspective Context Matching Model.  [1] 

 

3 .3 .1  Wo rd Representa t io n  La y er  

The word representation I used for the passage and question embeddings came from the 100 
dimensional GloVe word vectors provided.  

 

3 .3 .2  Fi l t er  La y er  

Intuitively, this layer serves to enhance the parts of the passage that are more relevant to the 
passage, with relevancy calculated by the cosine distance between vectors in the passage and 
vectors in the question. The relevancy matrix for a single example can be calculated using the 
following equations: 

𝑅 = 𝑄𝑃𝑇  

In this case, Q and P represent the normalized word embeddings. Q is of dimension Max 
Question Length x Embedding Size, while P is transposed so that it is of Embedding Size, 
Max Context Length. Multiplying these two matrices will get is relevancy matrix for that 
example. To get the relevancy factor, we simply take the max along the Question Length 
dimension, which will then let us scale the context vectors appropriately through a simple 
element wise multiplication. 

 

3 .3 .3  Co ntext  Representa t io n  La y er  

This layer takes the filtered passage representation, referred to as 𝑃′ from the previous layer 
as well as the question representation Q, and runs them through a Bidirectional LSTM. We use 
the final hidden states of both the forward and backward direction as the representation for the 
passage and the question. 

For each position i in the question, we calculate the forward direction hidden state:s 

ℎ𝑖
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ℎ𝑖−1

𝑝
, 𝑞𝑖) 

As well as the backward direction hidden state: 

ℎ𝑖
⃖⃗⃗⃗ = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (ℎ𝑖+1

𝑝
, 𝑞𝑖) 

We use the concatenated hidden states [ℎ𝑖
⃗⃗  ⃗; ℎ𝑖

⃖⃗⃗⃗ ] as the representation for the question.  

Similarly, for each position j in the context, we calculate the forward direction hidden states  
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ℎ𝑗
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ℎ𝑗−1

𝑝
, 𝑝𝑗) 

As well as the backward direction hidden state:  

ℎ𝑗
⃖⃗⃗⃗ = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (ℎ𝑗+1

𝑝
, 𝑝𝑗) 

We use the concatenated hidden states [ℎ𝑗
⃗⃗  ⃗; ℎ𝑗

⃖⃗⃗⃗ ] as the representation for the context. 

 

3 .3 . 4  M ult i -Perspec t iv e  Co ntext  M a tch ing  La y er  

In the original paper, they used this layer to compare each representation of the context from 
the previous layer to each representation of the question.  

We first define the function 

𝒎 = 𝑓𝑚(𝑣1, 𝑣2,𝑊) 

This function produces a 𝑙 dimensional vector, where 𝑙 corresponds to the number of 
perspectives. In our case, 𝑣1 and 𝑣2 are vectors of size 2𝐻, where H is the size of our hidden 
state.  𝑣1 corresponds to a passage vector at a particular timestep, while 𝑣2 corresponds to a 

question vector at a particular timestep. Our matrix is given by 𝑊 ∈ ℝ𝑙×2𝐻. With these 
parameters, we can calculate each index 𝑘 of the 𝒎 using the following formula: 

𝑚𝑘 = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑊𝑘  ∘ 𝒗𝟏,𝑊𝒌 ∘ 𝑣2) 

Where 𝑐𝑜𝑠𝑖𝑛𝑒 is calculates the cosine distance between the two vectors.  𝑊𝑘 marks the 
𝑘𝑡ℎ layer of the matrix W. 

I implemented the three matching schemes in the paper, full matching, max pooling matching, 
and mean pooling matching. 

3 .3 .4 .1  Ful l  M a tch ing  

In full matching, we compare the representation of the context at each time step from the 
context representation layer with the final hidden state of the question. In the original model, 
they broke this up into two portions. For each index j of the context representation, from 1…N, 
they calculated 

𝑚𝑗⃗⃗ ⃗⃗  
𝑓𝑢𝑙𝑙

= 𝑓𝑚(ℎ⃗ 𝑗
𝑝
, ℎ⃗ 𝑀

𝑞
;𝑊1) 

𝑚𝑗⃖⃗ ⃗⃗ ⃗
𝑓𝑢𝑙𝑙

= 𝑓𝑚(ℎ⃖⃗𝑗
𝑝
, ℎ⃖⃗1

𝑞
;𝑊2) 

Instead of splitting this up into two parts, I decided to use the concatenated hidden vectors 
from both the backwards and forwards direction together, to capture more of the interactions 
between the two directions. That is, I calculated  

𝑚𝑗
𝑓𝑢𝑙𝑙

= 𝑓𝑚([ℎ⃗ 𝑗
𝑝
; ℎ⃖⃗𝑗

𝑝
], [ℎ⃗ 𝑀

𝑞
; ℎ⃖⃗1

𝑞
];𝑊3) 

3 .3 .4 .1  M a x Po o l ing  M a tch ing  

This follows a similar idea as the previous matching, but instead of just comparing the context 
representation at each index j from 1 to N with the last hidden state of the question 
representation, we now compare it with the question representation at each timestep, from 1 
to M. For a particular context vector at position j, we then set the value of the 𝑙th dimension 
to be the maximum value taken across the dimension for the question representation.   Once 
again, in the original model, this was represented as  

𝑚𝑗⃗⃗ ⃗⃗  
𝑚𝑎𝑥

= max
𝑖∈(1…𝑀)

𝑓𝑚(ℎ⃗ 𝑗
𝑝
, ℎ⃗ 𝑖

𝑞
;𝑊4) 

𝑚𝑗⃖⃗ ⃗⃗ ⃗
𝑚𝑎𝑥

= max
𝑖∈(1…𝑀)

𝑓𝑚(ℎ⃖⃗𝑗
𝑝
, ℎ⃖⃗𝑖

𝑞
;𝑊5) 

For my model, I used this to calculate the max pooling vector: 
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𝑚𝑗
𝑚𝑎𝑥 = max

𝑖∈(1…𝑀)
𝑓𝑚([ℎ⃗ 𝑗

𝑝
; ℎ⃖⃗𝑖

𝑝
], [ℎ⃗ 𝑀

𝑞
; ℎ⃖⃗𝑖

𝑞
];𝑊6) 

This may cause the model to lose some degrees of freedom, as now the same index i has to be 
selected so that it maximizes across the backwards and forwards representation of the question. 

 

3 .3 .4 .1  M ea n Po o l ing  M a tch ing  

This is almost the same as the max pooling layer, but instead of taking the maximum across 
the question dimension, we take the mean. For my model, I used this to calculate the mean 
pooling vector: 

𝑚𝑗
𝑚𝑒𝑎𝑛 =

1

𝑀
∑𝑓𝑚([ℎ⃗ 𝑗

𝑝
; ℎ⃖⃗𝑖

𝑝
], [ℎ⃗ 𝑀

𝑞
; ℎ⃖⃗𝑖

𝑞
];𝑊9)

𝑀

𝑖=1

 

My final mixed representation of the context and the question, that is, the output of this layer, 
is simply the concatenated vectors 

[𝑚𝑗
𝑓𝑢𝑙𝑙

; 𝑚𝑗
𝑚𝑎𝑥; 𝑚𝑗

𝑚𝑒𝑎𝑛] 

 

3 .3 .5  Agg rega t io n  La yer  

This layer passes the vectors from the previous layer through another BiLSTM.  

 

3 .3 .5  Pred ic t io n  La y er  

I use a simple feed forward network to generate the predictions. That is, for the aggregated 
vectors 𝑉, each of size Max Length Context by 2𝐻, I would do the following: 

𝐴𝑠𝑡𝑎𝑟𝑡 = 𝑉𝑊𝑠𝑡𝑎𝑟𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  

𝐴𝑒𝑛𝑑 = 𝑉𝑊𝑒𝑛𝑑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  

I would then pass it through a softmax to calculate the probabilities for each word position 
being the starting and the ending, and then apply the cross-entropy loss to train the model. 

 

4  Experiments  

4 .1  Da ta  

I used data from the SQuAD dataset. Unfortunately, due to time limitations and low GPU 
utilization, I was only able to train the model for 1 epoch. Furthermore, I was unable to train 
it on all the examples at once due to the GPU running out of memory.  I thus applied random 
selection over the examples so as to prevent overfitting to a small dataset, saving the weights 
at each iteration. Given more time, and better efficiency I would run the model on the full 
dataset across all the epochs. The validation dataset was similarly extracted from the SQuAD 
dataset. 

 

4 .2  Hy perpa ra meters  

Here are the hyperparameters that I used for training this model:  

Table 1: Hyperparameters 

Hyperparameter 
 

H (State Size) 50 

Learning Rate 0.1 

GloVe Word 100 
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Embeddings 

Maximum 
Gradient Norm 

10 

Optimizer Gradient Descent Optimizer 

L (number of 
perspectives) 

50 

Unfortunately, these were mostly chosen due to hardware constraints, notably, memory size 
of the GPU, rather than actual performance reasons. A hyperparameter search would be useful 
for increasing the performance of the model, given more time. 

 

4 .3  Ev a lua t io n  

For evaluation, at each epoch, I calculated the loss, F1, EM scores for both the training and 
validation set. The training set was used as a sanity check to see that the loss was indeed going 
down and the F1 and EM scores were increasing. The validation set was used as a metric to 
see if the model could generalize to unseen data. Lastly, I tested the model on the dev set, once 
again, using the F1 and EM scores as a metric.  

 

4 .4  Resul t s  

These are the F1 and EM Scores after 1.5 Epochs, evaluated on the Validation, Development, 

and Test Sets. Due to time constraints and low utilization of the GPU, I was only able to 

train for 1.5 Epochs. At the point of writing, the train F1 was 21.1% and increasing, evidence 

that the model was still learning.  

Table 2: F1/EM Results after 1.5 Epochs 

 F1 Score EM Score 

Validation 19.2% 9% 

Development 13.42% 5.421% 

Test 14.003% 5.518% 

 

4 .4  Ana ly s i s  

The first thing to note is that while the model did not converge in 1.5 Epochs, as was to be 
expected, there was a general upward trend in the performance across the epoch, as I trained 
on more and more examples. At every 1000 examples or so, I evaluated on the training set as 
well as a random sample of 100 examples from the validations set. 

Fig 2: F1 Across 1 Epoch 
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Fig 3: EM Across 1 Epoch 

 

We see that the model does improve with more examples, with the improvement in F1 being 
more marked as compared to the improvement in the EM score. This was accompanied by a 
decrease in the training and validation cost as well. In order to speed up the learning, in 
future iterations, I would experiment with larger learning rates, especially in the first epoch, 
and perhaps use an adaptive gradient descent algorithm with annealing across the epochs to 
help the model converge. 

I also found that the model was greatly affected by the length of the context, as well as the 
answer. In general, there was a downward trend for both F1 and EM as the context length 
increased. Interestingly enough, there was a spike in performance for context lengths around 
270. Possible reasons may include having seen more examples in that range, although it 
could also be random. It is also interesting that the model does not perform as well in the 
opposite extreme, when the context length is very short.   

Fig 4: F1/EM for different context lengths in validation set 

 

Fig 5: F1/EM for different answer lengths in validation set
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The model also performs better for short answer spans, with the EM score decreasing 
sharply when the span is more than 3. 

Fig 6: F1/EM for different question types 

 

For the reasons above, the model performs much better for questions that have a simple 
concise answer, such as questions starting with “how many”, as opposed to open ended 
questions like “how did”. This is consistent with the findings of the original paper, where the 
“how did” questions received the lowest F1 and EM scores.  

In appendix A, we see an example of an exact match where the answer is to predict when a 
certain event happened, the correct answer being “1913”. We see that in this case the model 
is able to identify the right answer, with probabilities near the answer being close to 0, while 
there is a spike at the correct position. The model is able to handle such cases with an answer 
span of 1 well. 

 

5  Conclusion  

As far as implementation goes, I have learned about how to set up a neural network model 
from scratch, from loading and parsing the data, to setting up the TensorFlow graph and its 
operations, setting up the encoder and decoder, to training the model and evaluating it. I have 
also learned how important it is to use the hardware fully. Due to the long training time, 
training on the CPU was an intractable task, and not being able to fully utilize the GPU was a 
big roadblock for me.  

The first step to improving the performance of my model is definitely to try to get the GPU to 
have a higher utilization so that I can train the model on more data. Running the model on the 
full dataset over 10 epochs would likely give it a performance boost. I would also increase 
some of the parameters such as the hidden state size as well as the number of perspectives, as 
the increase parameter space would allow the model to adapt to more situations. I would also 
like to use tools like dropout, learning rate annealing,  as well as adaptive optimizers, instead 
of just a gradient descent optimizer.  

Beyond that, I would look into different models other than the boundary model, to see if that 
would increase performance. For instance, one possible method of prediction would be to 
classify each passage position as either part of the answer or not part of the answer. Then, an 
identification of the answer span could be done by finding a subsequence that maximizes the 
number of predicted answer words while minimizing the number of non-answer words. 
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I would like to thank Professor Christopher Manning and Professor Richard Socher, as well as 
the TAs of CS 224N for their support throughout this project.  
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Appen dix  A  

Fig 7: Start Probability Example For Exact Match 

 

Fig 8: End Probability Example For Exact Match 
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