Question Answering with SQuAD:
Variations on Multi-Perspective Context Matching

Jason Freeman, Raine Hoover
jasonf2 @stanford.edu, raine @stanford.edu
CodaLab: JasonF, rainehoover
Stanford University
CS 224N, Winter 2016-17

Abstract

We implement multi-perspective context matching for the task of question-
answering on the SQuAD dataset and explore a variety of modifications to this
core architecture. In our first modification, we compare the performance of GRUs
with that of LSTMs in the original model. Next we attempt to predict the answer’s
start index and length rather than its start and end indices. Finally, we introduce
a variation of attention which we call “question summaries” into the model. This
last modification proves most fruitful.

1 Introduction

Question answering is a key language competency that humans acquire early in their development.
Beyond the compelling theoretical implications of succeeding in modelling this competency in ma-
chines, automating question answering has many practical applications. Machine comprehension
has already helped improve the web search experience via direct answer display [2], and taken
home the winning prize on Jeopardy [1]].

In this work, we build on existing research addressing the traditional question answering task: given
a passage and a question referencing that passage, find the segment (or span) of the passage that
answers the question. Our dataset for this task is described in section 2. Next we discuss the base
model and our extensions to it in section 3. We explain our evaluation metrics in section 4, compare
and contrast our efforts with previous works in section 5, and present our results in section 6. Finally,
we describe common errors and propose directions for future work in section 7.

2 Dataset

We use the SQuAD dataset [4], a reading comprehension resource obtained through crowdsourcing
question and answer pairs over Wikipedia articles. The questions are framed in the context of para-
graphs, and the answers to these questions consist of spans within their corresponding paragraphs.

Our training set consists of 81,381 question, context, and answer triplets, while our validation set
consists of 4,284 such triplets. We test on a development set with approximately 87,000 triplets, and
report our results on this set for intermediate models. We report our final results on the hidden test
set of 9,533 triplets.

An answer in this dataset consist of a pair of indices that correspond to the beginning and end of
the answer span in the paragraph. Therefore, there is an opportunity for malformed labels, when
the end index is before the start index. In training, we choose to ignore such examples. There are
approximately 2,914 such malformed examples in the training set used.

In order to correctly set our models hyperparameters and appropriately balance accuracy with mem-
ory consumption, we examined the lengths of the questions and paragraphs (see figures [I] and [2)).

50000

500 600 700 800

Figure 1: Lengths of paragraphs in SQuAD.

60000

Figure 2: Lengths of questions in SQuAD.

Given these statistics, we set our maximum paragraph length to be 250 and our maximum question
length to be 40. Examples with spans that have endings after this maximum paragraph length are
tossed out during training as well (355 example triplets).

3 Models

Our primary model is an implementation of the multi-perspective context matching model (MPCM),
utilizing the same architecture described in Wang, et. al [3]. In the following sections we describe
our version of this base model as well as our extensions.

3.1 Base Multi-Perspective Context Matching Model (MPCM)

Multi-Perspective Context Matching (MPCM) is composed of a number of layers, depicted in figure
[l Given a paragraph P and a question (), the model passes these representations through six total
layers, ultimately outputting the probability that each index of the paragraph is the start and end
index of the answer span.

Word representation layer. In this first layer, the authors use character and GloVe or Word2Vec
embeddings to represent the words in both the paragraph and the question. In our implementation,
we use only GloVe embeddings [3] truncated at 300 dimensions and choose not to include character

Pr(ay|Q, P) Pr(a.|Q. P)
T A

softmax
Aggregation Layer r F 1

Prediction Layer

Multi-Perspective Context Matching Layer I I I """ I

Context Representation I I'_ '_I'_ ’—I H klk 1

Layer H4 _.I_. 4I I ,I - .I -
T

Filter Layer I I I I

' ’ r I

P1 Pz e Bj wn Py
t el [o] [Ind
| 4
Word Representation I I I I I T ._I I I I
Layer P1 Pz ... Pj.. Px G G .. @ .. 9
Passage Relevancy matrix Question

Figure 3: Base MPCM model as implemented in Wang, et. al [J3]

embeddings . At the end of this layer, we have @ = [q1, q2, ...qm]| and P = [p1, p2, --.PN]-

Filter layer. Words in the paragraph are weighted by the maximum relevance to any word in the

.T .
question. This is done through the calculation of a relevancy matrix R, where r;; = m.
i j
Each p; is weighted by its relevancy degree r; where 7; = max;en 74 5, to give us pj = 1j - ;.
We pass P’ = [p], P5, ---PN] and Q = [q1, qz, ...dm] into the next layer.

Context representation layer. Time-steps of the paragraph and question are mixed together in
order to capture contextual information in the paragraph and question. We use the same bi-LSTM
to encode P’ and Q).

Multi-perspective matching layer. Three matching vectors are calculated for each forward and
backward state in the paragraph, for a total of six matching vectors per paragraph position. The
elements of the resulting matching vectors are called perspectives, and are denoted with the subscript
k. Each of the six matching vectors is computed using a different weight matrix W. The matching
vectors all are generated using the same basic function:

mi(v1,v2) = cos(W7 © vy, W7 © vs)

where cos is the cosine similarity function and z corresponds to a type of matching vector (of the
three options described below) and a particular direction (forward or backward).

Full matching: For each token in the paragraph p;, compute
m*(p;, q")

where ¢* is the final and initial hidden state of the question words, for the forward (z = 1) and
backward (z = 2) direction respectively.

Mean-pooling matching: For each position in the paragraph p;, compute

1 z
i > m*(pj,qi)
qi
This is done for the forward (z = 3) and the backward (z = 4) directions.

Maxpooling-matching: For each position in the paragraph p;, compute
maxm*(p, ¢i)

This is done for the forward (z = 5) and the backward (z = 6) directions.

The result of the entire matching layer is the concatenation of all these results (z = 1...6) for
each paragraph token p;. The shape of this output is a vector of length six times the number of
perspectives for each p;.

Aggregation layer. Similar to the context representation layer, the aggregation layer uses a
bi-LSTM to mix the outputs of the matching layer. In this way, it allows the model to further capture
interactions between different matching vectors.

Prediction layer. The aggregation vector for each time step is fed through two different two-layer
neural networks that each end in a softmax. The hidden layer in each network uses tanh for its
nonlinearity. One of these neural networks produces the probability distribution over all paragraph
positions for the start index, and the other for the end index.

Since we have padded paragraphs, there is the possibility to predict indices that are past the end of
the paragraph. In order to prevent this, we add an exponential mask to the outputs before applying
the softmax. The mask adds 0 for each position in the paragraph, and —oo for each position past the
end of the paragraph. This results in a probability of zero for each index that is out of bounds of the
paragraph.

3.2 MPCM Using GRUs

For our first experiment, we replace the LSTM cells in the context representation layer and the
aggregation with GRU cells. This approach is motivated by the comparable performance of GRUs
and LSTMs.

3.3 MPCM With Length Prediction

In this variation, we change the interpretation of the final prediction for the end index. Instead of
predicting the start and end indices of the answer in the paragraph, we predict the start index and
the length. The intuition behind this change is that the length seemed to be in some sense more
predictable. Our implementation further incorporates this intuition by introducing a new hyperpa-
rameter .5 < o < 1. The intended result of « is to weight the loss generated from the start prediction
more than the loss generated from the length prediction.

3.4 MPCM With Question Summaries

We replace the filter layer with a different relevancy-based modification, inspired by co-attention
[6]. In this scheme we take the same relevancy matrix R, but we apply a softmax operator, nor-
malizing each column to produce R,. This can be interpreted as a conditional distribution where
(Rq)i,; = P(qi | p;j). We then take the expectation over the question tokens for each paragraph
token E[g; | p;] = QR,. We then concatenate this matrix with P. The result is that each element in
the paragraph is accompanied by a corresponding summary of the words in the question.

3.5 Learning and Loss Across All Models

We use batched stochastic gradient descent with the Adam optimizer and a learning rate of 0.0001.
Our batch size is 32 examples, and we run 10 total epochs. Our loss is the cross entropy loss on the

softmax predictions for the start and end (or length) indices, using one hot vectors of paragraph end
indices (or lengths) as the labels. We also apply dropout at each layer with a drop rate of 0.2.

4 Evaluation

To evaluate the performance, we use two metrics: F1 and EM (exact match). F1 is defined as the
harmonic mean of precision (P) and recall (R):

_ 2PR

~ P+R

Precision is the ratio of the number of correctly predicted tokens in the span divided by the number
of total predicted tokens in the span. Recall is the ratio of the number of correctly predicted tokens

in the span divided by the number of total tokens in the ground truth span. EM is a stricter metric
that simply assigns 1 to an example if the span matches perfectly, and O otherwise.

F1

We report the average of both of these metrics over the entire development/test dataset.

5 Related Works

Our experiments build heavily off of previous work in the question answering space. We use Wang
et. al [S]] as a spring board for our various experiments. One shortcoming of that model—- and indeed
any model that predicts the start and end indices directly— is its ability to predict invalid “backwards
spans”, where the end index is before the start index. Another potential pitfall of the model is the
loss of paragraph information early on, in the filter layer: the original paragraph word embeddings
are mutated according to their relevance to the question word. Furthermore, in taking the maximum
over all question words for each paragraph word, the filter layer only captures the relationship of
a paragraph word with one question word, rather than with all of them. The coattention model
proposed in Xiong et. al [6] does not suffer from either of these problems, as it calculates a version
of this relevancy (the dot product instead of cosine distance) for each question word and paragraph
word and then concatenates it with the original paragraph representation.

6 Results

The results from each experiment on the development set can be seen in table [} The MPCM with
Question Summaries model performed best, followed by the base MPCM model. The training loss
for this model is displayed in figure] On the test set MPCM with Question Summaries achieved
an F1 of 45.604 and an EM of 32.781.

0000 2000k 4000k SOCCK 8000k 1000k 1200k 1400« 1800k B0k 2000¢ 2200k 2400k

Figure 4: Training loss for MPCM with Question Summaries model.

7 Error Analysis and Future Work

Our initial experiments extracted answer spans using the GloVe vocabulary [3]. For unknown
tokens, this sometimes resulted in examples where the model predicted the span correctly, but the
preprocessed paragraph had an UNK id corresponding to the unknown token. This penalized the

Model F1 EM
MPCM with Question Summaries | 45.865 33.273

MPCM 44.472 | 30.719
MPCM with GRU 43.537 | 29.537
MPCM with Length 33.711* | 18.117*

Table 1: Performance on the dev set for each model implemented. Metrics marked with * were
polluted with <unk> tokens during evaluation (though the ranking shown here held when all metrics
were thus polluted).

performance. We corrected for this in subsequent experiments where we used the indices to take the
excerpt from the original paragraph. This boosted our performance by about 5% in F1 and EM.

As we said, in experiments where the model predicted the start and end indices (instead of the
length), there was the potential to predict backwards spans. This resulted in empty answers. This
occurred on average in 12.4% of examples during evaluation. Better tuning of the length prediction
model could help address this issue in the future.

Our model also made some more linguistically interesting errors. Many of the errors were spans
that were not valid grammatical constituents, and therefore would not be an appropriate answer for
any question. For example, when answering the question Who stripped the ball from Cam Newton
while sacking him on this drive? regarding a football match, the model answers with linebacker Von
Miller knocked. This suggests that the model could benefit from more grammatical guidance, say
from a constituency or dependency parser.

The ground truth answers given in the dataset tend to be concise. For example, in a piece about
complexity theory, the phrase complexity classes is always preceded by the phrase important. The
model therefore has no reason to distinguish between the phrases complexity classes and important
complexity classes, despite the fact that the former would normally constitute a better answer, as it is
more concise. This again suggests that parser guidance might be helpful, along with a bias to prefer
shorter constituents if they are similar in meaning to longer constituents.

One idea for further augmentation of the model builds on the success of the questions summaries
that we added to the paragraph representations. It is conceivable that adding paragraph summaries
to each question word would also be helpful in relating the paragraph to the question. One could
compute the expected paragraph vector for each question word in the same way that we did the
reverse, and augment the questions vectors with this information.

References

[1] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally, J. W.
Murdock, E. Nyberg, J. Prager, et al. Building watson: An overview of the deepqa project. Al
magazine, 31(3):59-79, 2010.

[2] C. Kwok, O. Etzioni, and D. S. Weld. Scaling question answering to the web. ACM Trans.
Inf. Syst., 19(3):242-262, July 2001. ISSN 1046-8188. doi: 10.1145/502115.502117. URL
http://doi.acm.org/10.1145/502115.502117.

[3] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.
In EMNLP, volume 14, pages 1532-1543, 2014.

[4] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[5] Z. Wang, H. Mi, W. Hamza, and R. Florian. Multi-perspective context matching for machine
comprehension. arXiv preprint arXiv:1612.04211, 2016.

[6] C. Xiong, V. Zhong, and R. Socher. Dynamic coattention networks for question answering.
arXiv preprint arXiv:1611.01604, 2016.

Contributions of team members: We pair programmed the vast majority of coding tasks, and
evenly divided up what we did not pair program. We co-wrote the paper and poster as well.

http://doi.acm.org/10.1145/502115.502117

	Introduction
	Dataset
	Models
	Base Multi-Perspective Context Matching Model (MPCM)
	MPCM Using GRUs
	MPCM With Length Prediction
	MPCM With Question Summaries
	Learning and Loss Across All Models

	Evaluation
	Related Works
	Results
	Error Analysis and Future Work

