CS224N Assignment 4: Reading Comprehension

Christina Kao - chris18@stanford.edu - 05650213
Jason Liu - liujas00@stanford.edu - 05933552
Christopher Vo - cvo9@stanford.edu - 05938491
Codal.ab Username: liujas00

Abstract
Building question answering systems with deep learning is a significant application of solving the complex
natural language problem of reading comprehension. In our approach, we have analyzed literature on

previous work, implemented and improved on specific models described, and compared the various models
to analyze the effects of certain aspects of models on performance on the question answering task.

1 Introduction

Reading comprehension is a complex natural language processing task with applications to building knowledge
representation and question answering systems. Previous approaches involving deep learning have applied var-
ious methods for representing the context and questions and obtaining answer spans. While many of these
methods have performed well (around 84 F1, 77 EM on the SQuAD test set), deep learning systems have yet
to achieve human levels of accuracy (91 F1, 82 EM).

Given a question and a context paragraph, the goal is to predict the span within the context which contains
the answer to the question using a deep learning architecture. Our general approach is to analyze literature
on previous work, implement and improve on specific models described, and compare the various models. The
models are evaluated by calculating the F1 and Exact Match (EM) scores of the models on a common test set.
We have implemented and evaluated three models: a simple attention baseline model, a dynamic coattention
model inspired by Xiong et al [3], and a multiple perspective context matching model by Wang et al [2].

2 Background and Related Work

Since the release of the Stanford Question Answering Dataset (SQuAD), a comprehensive dataset containing
realistic and challenging questions, many deep learning approaches to machine comprehension have performed
well on question answering. Our approaches have been inspired by two models in particular, Dynamic Coatten-
tion Networks [3] and Multi-Perspective Context Matching [2].

The Dynamic Coattention Networks approach, published by Xiong, Zhong, and Socher from Salesforce Re-
search, introduces a model that consists of a coattentive encoder to capture question document interaction and
a dynamic pointing decoder to estimate the start and end points of the answer span [3]. Within the model, the
question and context are encoded using Long Short Term Memory (LSTM) neural networks. An affinity matrix
is then computed to capture the relationships between the question and context from which new question and
context representations are formed. These representations are then passed to a bidirectional LSTM to capture
temporal information. To obtain the answer span, the dynamic decoder applies a Highway Maxout Network
model to predict the start and end points of the answer span. The method performs well at an F1 score of 80.4
and an EM score of 71.2 on the SQuAD test set using an ensemble of models. We were motivated to work with
this model due to the unique approach to coattention to capture question-context interaction and the strong
performance of the model on the question answering task.

In a different approach, the Multi-Perspective Context Matching model, published by Wang, Mi, Hamza, and
Florian from IBM Research, presents a model that directly predicts the start and end answer span points by

matching the context with question from multiple perspectives [2]. This model calculates a relevancy weight
for each context word representing its similarity to each question word and scales the context by these weights.
The question and weighted context representations are then passed through bidirectional LSTMs to capture
temporal information and obtain the final representations. The context is then compared with the question
using different matching strategies from multiple perspectives to form matching vectors. These matching vectors
are then passed to bidirectional LSTMs to produce an aggregated vector for each time step. To obtain answer
spans, the aggregated vectors are fed through separate feed-forward neural networks to predict the probability
distributions of the span start and end points. The model achieved strong performance on the SQuAD test set
with 81.3 F1 score and 73.8 EM score. Our approach was inspired by this model because of the interesting
mulit-perspective approach to matching context and question and the significant performance of the model on
question answering.

3 Approach

3.1 Baseline Model
3.1.1 Baseline Encoder

Our baseline encoder incorporates a simple representation of the question and context using basic attention.
To begin, we encode the question () and context C' representations using a bidirectional LSTM to obtain new
representations, Qrep € R™*! and Crep € R™*! respectively where n is the max length of a question, m is the
max length of a context paragraph, and [is the size of the word embeddings. An attention matrix a € R™*"
is then computed by multiplying Cyep and Qrp together as a simple measure of similarity between the context
and question. The question representation is then scaled by the affinity matrix to produce o/ € R™*! that
incorporates question-context interaction, and our final output is the concatenation of the context representation
Crep and .
Q,C = Bi— LSTM — Qrep, Crep

T
a= CT@PQrep
a = aQrep

output = [Chrep;]

| —
c— — (=] =

Figure 1: Baseline Model Encoder

3.1.2 Baseline Decoder

To obtain the answer span, our baseline decoder calculates the probability distribution for the start and end
indexes in the context. The final output x from the encoder is passed through a single dense layer transformation
with weight W and bias b parameters initialized by the Xavier initializer. We use dropout with a keep probability
of 0.85. Our final decoder output € R™*!*2 consists of two separate (unscaled) probability distributions that
score each context word index on how likely it is to be the start index and how likely it is to be the end index.
To obtain an answer span, we simply pick the context indexes that have the highest scores for the start and end
distributions.
output = dropout(Wz + b)

3.2 Dynamic Coattention Model
3.2.1 Dynamic Coattention Model Encoder

Our implementation of the dynamic coattention encoder follows what is proposed in the Dynamic Coattention
Network paper [3], with a minor change being the exclusion of the sentinel vectors for the document and question
representations.

The coattention encoder architecture can be summarized by the following graph from [3]: the documenta-
tion and question are encoded using the same LSTM, and the final question representation is created through
an additional tanh layer. The two attention matrices, one across the document for each word in the question
(A®Q), and the other across the question for each word in the document (A®), are generated through normalizing
the product of the document and question representations. These two attention matrices are then combined with
the document and question representations through multiplications and concatenations, and passed through a
bidirectional LSTM to create the final coattention output.

Document, Question — LSTM — D € R>*(m+1D ¢

Q = tanh(WQ' +b) € R*(+D

L=D"Q
A9 = softmaz(L), AP = softmax(LT)
C? =DA%
CP =1@;C¥]

[D;CP] = Bi— LSTM — U

Figure 2: Coattention Encoder from Xiong et.al (2017)

3.2.2 Baseline Decoder

We used the same decoder as that in the baseline model. See section 3.1.2 for details.

3.3 Multi-Perspective Context Matching Model
3.3.1 Multi-Perspective Context Matching Model Encoder

This model has five major components.

Word Representation Layer: In the paper, Wang et al chose to use pre-trained GloVE vectors concatenated
with character-composed embeddings for each question and context word [2]. In our experiment, we decided not
to include the character-composed embeddings, as the authors’ ablation test reveals that not doing so results in
only the slightest penalty to F1 and EM scores. This is fairly routine step in deep learning models that allows
us to start with a general understanding of our data.

Filter Layer: In this layer, we calculate the cosine similarity between each pair of question and context embed-
dings. Then, we scale each context embedding by the maximum of all similarity values between that specific
context embedding and all question embeddings. This layer exists to filter out any context embeddings that
have absolutely no relation to any of the question words; if the max cosine similarity is 0, then the embedding
is zeroed out.

Context-Representation Layer: In this layer, we run a BiLSTM separately over the question embeddings and
our scaled context embeddings. This gives us forward and backward outputs for both questions and contexts.
As the name of the layer implies, running a bidirectional LSTM allows us to capture the overall context of the

individual words in both question and context. So we have H¢, H¢ € RVN*L and HY9, H9 € RM*L

Multi-Perspective Context Matching Layer: This is the most important part of the model. As stated by Wang
et. al, "The goal of this layer is to compare each contextual embedding of the passage with the question with
multi-perspectives.” There are two directions in which matching is made. The first is dimensional weighting
matching with:

m = fm(vy,ve; W) (1)

Here, W is a matrix of size RF*?, where 1 is the number of perspectives and d is the dimension of the hidden

state from the previous layer. vy and vy are both d-dimensional vectors. The following is the derivation for m:
my, = cosine(Wy, ® vy, Wi, © va) (2)

As the paper suggests, we use three matching strategies to compare each contextual passage embedding with
the question.

. T
mfull = fnb(hja h?\/]vwl) (3)
w .
i = [(S, e W?) (4)
mazr __ e 37 . 3
m? _iem%fm(hj, R W3) (5)
— = 4
ﬁ;nw - 1'6?11?}1(\4) SR, W) ©)
1 & -
m;nean — Mme(h;, hg,Wl) (7)
1=1
1 U = =
et = <2 fm(hG b W) (8)
1=1
ull ull mazx max mean mean
my = [[M e e e e 9)

Aggregation and Prediction Layer: The resulting matching vectors for each contextual paragraph embedding
are then fed into a BiLSTM. The forward and backwards outputs are concatenated.

Pr(ap|Q.F) Pr(a.|Q.F)

Prediction Layer softmax softmax

Mubti-Perspective Context Matching Laver

Aggregation Layer = = = =
m,

H- 4
Filter Layer I I ------ I I
g LB Py

Context Representation I' I o I' _'I I

Po Pl B
[] [nl | lnd
Word Represeatation I I —I — I . . I I — I I
Layer P Pro By . Pa [N A R,

Passage Relevancy matrix Question

Figure 3: Multi-Perspective Matching Architecture from Wang et.al (2016)

3.3.2 Baseline Decoder

We used the same decoder as that in the baseline model. See section 3.1.2 for details. This decoder is basically
encapsulated by our Aggregation and Prediction Layer.

4 Experiments

The three models we implemented were run on the same validation set to compute and compare performance.
The main dataset used for both training and testing is the Stanford Question Answering Dataset (SQuAD), a
large dataset containing realistic and challenging questions. The format of the answers are a span in the context
which is desirable for our approach. The dataset contains a diverse set of questions requiring different kinds
of logical reasoning to deduce the answers and is widely used in other deep learning approaches for machine
comprehension.

In terms of training our models, we calculated loss by taking the softmax cross entropy of our unscaled proba-
bility distributions calculated by the decoder, and matched the results with the correct labels.

To evaluate our models, we computed and compared F1 and Exact Match (EM) scores for each model on the
validation set, two widely used metrics for SQuAD proposed by Rajpurkar, Zhang, Lopyrev, and Liang from
Stanford University in the original SQuAD paper [3]. As described in the literature, F1 score measures the
average overlap between the prediction and ground truth answer. The prediction and ground truth are treated
as bags of tokens, and the F1 score is computed. The maximum F1 over all ground truths for a question is
taken, and the final F1 score is the average over all questions. On the other hand, exact match measures the
percentage of predictions that match any of the ground truths exactly.

4.1 Baseline Model

Our baseline model was implemented and evaluated on the validation set to obtain a base performance threshold.
The goal was to compare the baseline model with more advanced models to analyze the effects of more sophis-
ticated attention features on performance of the question answering task. Our simple baseline model achieved
an F1 score of 51.8 and an EM score of 21.6 on the validation set used to evaluate our models. Performance for
our baseline model plateaued after the third epoch. Additionally, training loss decreased over each epoch and
batch iteration while the normalized gradient decreased slightly. Dropout with a keep probability of 0.85 was
applied at the decoding layer. A learning rate of 0.001 was used, chosen based on empirical testing.

Baseline Model Training Loss Over Time 10 Baseline Model Normalized Gradient Over Time

G
I - R -

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Batch Iteration Batch lteration

Figure 4: The training loss over Figure 5: The normalized gradi-
each batch iteration and epoch for ent over each batch iteration and
the Baseline model. epoch for the Baseline model.

4.2 Dynamic Coattention Model

There are four main differences between the coattention encoder and our baseline encoder: (1) coattention
model uses single direction LSTM and has an additional non-linear projection layer for question representation,
whereas the baseline uses bi-directional LSTM to encode (2) coattention model adds an additional sentinel vec-
tor to the original documentation and question representations (3) instead of just calculating the representation
for the question in light of each word of the document (baseline), the coattention model also computes the
reverse (4) coattention model passes the final representation through a bi-directional LSTM.

We divided the coattention encoder into separate components based on the differences mentioned above, and
tested out various combinations by adding components to the baseline encoder or subtracting components from
the coattention encoder one by one. We keep (1), (3) and (4), as there are no noticeable improvements of
BiLSTM encodings over LSTM, and the combination of (3) and (4) provide more fine-grained attention rep-
resentations, and are also the main differentiators between our baseline encoder and the coattention encoder;
whereas the addition of sentinel vectors to our model harmed performance, resulting in little to no learning and
hence a stagnant loss, which could be due to the simplicity of our decoder, therefore we decided not to include it.

For our final run of the coattention model on the full dataset, we apply dropout with a keep probability of
0.85, and choose a decay rate of 0.3 over 1600 steps for the learning rate, because each of our epoch is 1600
steps, and based on previous runs, the model stopped learning pass the 1st epoch. We used Adam Optimizer

Given the experiments above, the model achieved an F1 score of 53.9 and EM score of 21.0. The training

loss converged after about 6000 batch iterations despite an increase in the normalized gradient, which could be
due to us using too low of a decay rate.

Dynamic Coattention Model Normalized Gradient Over Time

Dynamic C Model Training Loss Over Time

10

Gradient

.5
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 Batch lteration

Batch Iteration

Figure 7: The normalized gradi-
ent over each batch iteration and
epoch for the Dynamic Coatten-
tion model.

Figure 6: The training loss over
each batch iteration and epoch for
the Dynamic Coattention model.

4.3 Multi-Perspective Context Matching Model

For the multi-perspective model, the only implementation difference, as previously discussed, was that we did
not include character embeddings. Otherwise, our model followed the Wang paper fairly closely. We did differ
in hyper parameters, however. In the interest of cutting down training time and not exceeding GPU space, we
used only 1 perspective instead of 50 perspectives, and our GloVE vectors were only 100-dimensional instead
of 300-dimensional ones[2]. The authors’ benchmark tests indicated that the difference between 50 perspectives
and 1 perspectives was about a reduction of 4 percent in EM score[2]; given more time, we would like to train
with that many perspectives and observe the boost ourselves. Similarly to the authors did, we also implemented
dropout at every layer. However, while the authors used a ratio of 0.2, we used a ratio of 0.1 because we had
fewer parameters to work with. We used a learning rate of 0.01 with a decay rate of .5 every epoch, as past
testing indicated that the model learned a lot within the first epoch, and would need significantly lower learning
rates in later stages of training. We used Adam Optimizer.

10,_Multi-Perspective Matching Model Training Loss Over Time Multi-Perspective Matching Model Normalized Gradient Over Time

7

6

Gradient
N w s W

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Batch Iteration Batch lteration

Figure 8: The training loss over Figure 9: The normalized gradi-
each batch iteration and epoch ent over each batch iteration and
for the Multi-Perspective Match- epoch for the Multi-Perspective
ing model. Matching model.

4.4 Analysis and Comparison

For our models, the Multi-Perspective Matching model had the highest performance with 68.2 F1, 36.0 EM
while the Dynamic Coattention did second best with 53.9 F1, 21.0 EM and our Baseline model performed the
worse with 51.8 F1, 21.6 EM on the val set. In addition, our best model, Multi-Perspective Matching, achieved
46.7 F1 and 33.8 EM on the test set used as the final submission to the leaderboard. This suggests that more
complex attention correlates with better performance; however, models with complex attention often take longer
to learn as their initial F1 and EM scores are much lower in the first few epochs. Additionally, all of our models
have a large gap between F1 and EM scores which may potentially be due to the simple decoder function that
each model uses to predict span start and end points.

F1 Scores per Epoch for Each Model EM Scores per Epoch for Each Model

— Baseline — Baseline
— Dynamic Coattention — Dynamic Coattention
08 —— Multi-Perspective Matching 08 ~— Multi-Perspective Matching

F1 Score
EM Score

02

00

Figure 10: The F1 scores per Figure 11: The EM scores per
epoch for each of our models. epoch for each of our models.

Additionally, we analyzed the performance of our best model, the Multi-Perspective model, on different types

and lengths of questions. The model seems to perform well on questions beginning with the words ”When” and
”In” because these questions generally have a simple answer such as a single date or location. For example, on the
question ”When did Robert Crispin go up against the Turks?”, our model predicted the simple answer ”1060s”
which is part of the valid answer set of ”1060s” and ”In the 1060s”. On the other hand, our model performs poorly
on questions beginning with ”Why” as these questions can be more complex and have variable length answers.
On the question ”Why are ctenophores extremely rare as fossils?”, our model predicts the answer ”Because of
their soft , <unk> bodies , <unk> are extremely rare as fossils , and fossils that have been interpreted as <unk>
have been found only in lagersttten , places where the environment was exceptionally suited to preservation of
soft tissue” where ” <unk>” is an unknown word that does not appear in the vocabulary. The valid answer set
for the question consists of ”Because of their soft, gelatinous bodies” and ”their soft, gelantinous bodies” which
shows that while our answer contains the relevant information, it produced an answer that was too long.

F1 Score By Question Type 7 EM Score By Question Type

4 4 @ © @ m @ = O = 9 § @ @ @ m @ & @9 =
mmmmmmmmmmmmmmmmmmmm
s & g 2 § s 8 8 3 3 s & g 2 5§ 38 8 338
~~~~~~~~~~~~~~~~~~~~

Figure 12: The F1 scores by ques- Figure 13: The EM scores by
tion type for our best model. question type for our best model.

When analyzing question length, we found that generally, performance decreases as question length increases
except for really short questions of length one to five words. This may be that for sentences of this size, our
model has a hard time fully capturing the context representation of the question and relating the paragraph to
it. For example, on the short question ”What was Galileo Ferraris?”, our model predicted the answer ”Italian
physicist Galileo Ferraris , but decided Tesla ’s patent would probably control the market” when the valid
answer set contained ”physicist” and ”Italian physicist”. In this instance, our model has the correct idea, but
struggles to map a more specific section of the paragraph back to the question.

EM Score By Question length

F1 Score By Question Length

2125 (102)
26:30 (16)

Ed

2125 (102)
26-30 (16)

Question Length

Figure 15: The EM scores by
question length for our best
model.

Figure 14: The F1 scores by ques-
tion length for our best model.

5 Conclusion and Future Work

From our approach, we learned that most of the improvements in performance for question answering models
come from better word embedding vectors and stronger capture of question-context interaction as our models
with the most sophisticated attention functions performed best. For future work, we would like to implement a
more complex decoder to improve span prediction. One of the major differences between the original Dynamic



Coattention model and ours was using the Highway Maxout Network decoder which may be a key reason for
the lack of relative performance of our Dynamic Coattention implementation. Better decoders may also help
with the gap between our F1 and EM scores for our models. Additionally, future work could include more
hyperparameter tuning and training ensembles of our models to further boost performance. Finally, combining
different features of the models we compared and analyzed may also lead to a better performing model than
any individual model we implemented.

6 Team Contributions

As a team, we worked very well together. In addition to group programming, Christina and Jason worked
mainly on implementing the Baseline, Dynamic Coattention, and Multi-Perspective Matching models while
Christopher worked mainly on implementing the qa-answer script and visualization code, graphs, and poster.
Everyone also contributed equally to the paper.

7 References

[1] Rajpurkar, Pranav, et al. ”Squad: 100,000+ questions for machine comprehension of text.” arXiv preprint
arXiv:1606.05250 (2016).

[2] Wang, Zhiguo, et al. ”Multi-Perspective Context Matching for Machine Comprehension.” arXiv preprint
arXiv:1612.04211 (2016).

[3] Xiong, Caiming, Victor Zhong, and Richard Socher. "Dynamic Coattention Networks For Question Answer-
ing.” arXiv preprint arXiv:1611.01604 (2016).



