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Abstract

Machine Comprehension is a daunting task, since it requires cross-encoding and
exchanging information between a context paragraph and a given query in order
to produce an answer span. In designing baselines for a machine comprehension
model, each model training has a long turnover, which does not bode well when
there is limited time to train. Long runtimes are often from implementing recur-
rent neural networks (RNNs), whose forward and backward passes do not make
adequate use of the parallel compute units at hand. This paper discusses how to
apply convolutional neural networks (CNNs) to the machine comprehension task.
The author incorporates CNNs with existing bidirectional attention-flow mecha-
nisms and compares the performance to RNN-based models. The model has been
evaluated on the Stanford Question Answering Dataset (SQuAD).

1 Introduction

The machine comprehension (MC) task has recently become popular for many deep learning
projects. While still a budding field, deep learning and neural networks have evolved to handle
difficult tasks like machine comprehension and question answering end-to-end. As the MC task
becomes more fleshed out, more datasets are published that challenge the ability of a machine to
adapt. In particular, the Stanford Question Answering Dataset (SQuAD) poses the task of answer-
ing a question—or query—by parsing a given context—or paragraph—and returning a span of the
paragraph that answers that question [1].

In recent work, the most popular deep learning architecture used to tackle the machine comprehen-
sion tasks has been recurrent neural network (RNN) architectures. These tasks are often phased as
a three part problem: encode context within the paragraph and query independently, enforce atten-
tion that connects the paragraph to the query, and then encode the attention-aware context of the
paragraph to answer the question. RNNs utilizing bidirectional long-short-term memory cells (BiL-
STMs) are used for both encoding tasks to allow a single word to become aware of words before
and after it.

However, while bidirectional RNN architectures like BiLSTMs provide an intuitively human ap-
proach for encoding context—after all, like a human, they scan forward and backward until they
come across the answer—they have very slow performance, as they are not easily parallelizable.
Training RNNs requires unrolling each step of the RNN for each iteration, and advanced paralleliz-
able hardware like GPUs are somewhat underutilized. However, it is well known that a convolutional
neural network (CNN) architecture operates in-parallel and therefore often performs faster than the
in-series RNN architecture on GPU resources. CNNs are often used for computer vision tasks to
extract higher-order, region-aware features for classification or object identification.

Therefore it is mainly intuition that motivates this project to use CNNs to produce a per-word,
context-dependent representation for machine comprehension tasks. In this paper, we introduce a
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hybrid CNN layer that implements what we define as a convolutional pipeline, merging together
the pipelined RNN text-scanning architecture and CNN feature highlighting tasks in recent deep
learning approaches for computer vision. We pass the output of each convolution to successively
larger kernels and ultimately produce a vector per word that encodes information from both local
and faraway contexts. We tackle the machine comprehension task with an attention model adapted
from BiDAF [2], where all RNN layers are substituted with our new CNN layer.

We evaluate our machine comprehension model against BiLSTM-based BiDAF approaches on
SQuAD and show that while we do not achieve performance higher than logistic regression, we
at least perform better than the sliding window baseline with minimal hyperparameter tuning. Fur-
thermore, for the same set of hyperparameters and same set of training epochs, a CNN-based model
has comparative performance to BiLSTM and has much shorter training time per epoch.

2 Background

A few recent works focus on machine comprehension with SQuAD. [3, 4, 5, 2]. Almost all of these
models have a three-phase processing pipeline prior to the output layer: first encode the paragraph
and query separately, then apply an attention layer to the paragraph with respect to the query, then
finally encode the attention-aware paragraph. The innovation of these models often comes in the
attention layer, where one must make decisions on the appropriate method of combining the para-
graph and query. A multi-perspective context approach uses cosine similarity [3], but we found
the memory requirements of this model to be too exhaustive. We therefore use the Bi-Directional
Attention Flow for Machine Comprehension (BiDAF) model, whose basic memory requirements fit
within our computing resources. There are also choices for the output layer, which can output either
labels per-word for their inclusion in the answer span [5], or two separate probability distributions
of the start and end indices of the answer span [3].

In natural language processing tasks, RNN architectures are often preferred because they provide an
intuitive model for how the neural network processes a body of text. However, there also exists vari-
ous text-based tasks using CNNs, the most well-known of these architectures being character-aware
embeddings [6]. CNN models exist for sentence classification [7, 8] and pair-wise embeddings of
sentences [9]. However, because the machine comprehension (MC) task is relatively new, there is
little work in CNNs applied to tasks which require attention [10]. Furthermore, typical applications
of CNN architectures to text-based tasks pool together CNN layer output into a single vector repre-
senting the entire text passage. However, in order to use BiDAF and other attention-based MC tasks,
we would like to keep per-word vectors.

3 Approach

We formally define the machine comprehension problem as follows: Given a (paragraph, question)
pair defined as (P , Q), find the probability distributions Pr(ast|Q,P ) and Pr(aend|Q,P ) of the
answer start index and end index, respectively. From these two probability distributions, generate an
answer span that correctly addresses the question, or query Q, where the range of the answer comes
from the paragraph, or context P . The context P and query Q have N and M words, respectively.

Our CNN-based machine comprehension model consists of six layers of multi-stage processing.
After an initial processing on fixed word embeddings (Filter Layer), there are three hidden layers
with learnable parameters (Contextual Representation Layer, Attention Flow Layer, and Modeling
Layer) followed by a final output layer with learnable parameters. As shown in Figure 1, the main
components of the architecture resemble those in the BiDAF model [2]; however, there are a few key
differences in how we generate the context and query representations. We describe each component
in detail below.

3.1 Word Representation Layer

The first step is to represent each word in P and Q with a d-dimensional embedding that encodes
meaning of each individual word. We use fixed vector embeddings pre-trained with GloVe [11]. We
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Figure 1: CNN BiDirectional Attention Flow Model (best viewed in color).

thus can represent the context paragraph P as a matrix P̂ = [p̂1, · · · , p̂N ] ∈ Rde×N and the query
question Q as Q̂ = [q1, · · · , qM ] ∈ Rde×N .

3.2 Filter Layer

We then filter out redundant information from the context by using a relevancy matrix, as described
in Wang, et al. [3]. Each ri,j element in the relevancy matrix (∈ RN×M ) is the cosine similarity

between each pair of embedding vectors (p̂i, qj), where p̂i ∈ P̂ and qj ∈ Q̂: ri,j =
p̂i

T qj
||p̂i||·||qj || . We

then calculate the relevancy degree ri for each context word by ri = maxj ri, j, and filter each each
context word embedding p̂i to produce pi = ri · p̂i. The filtered context [p1, · · · pN ] ∈ Rde×N is
then passed onto the next layer. We chose to implement this layer because the ablation tests in Table
4 of Wang, et al. [3] showed the simple filtering provided a small boost in model performance. The
query embeddings Q̂ are not filtered.

3.3 Contextual Representation Layer

After the initial filtering, we come to our first hidden layer, which encodes the temporal interaction
of the words in the paragraph context and produce a contextual representation for each word that
incorporates information of the other words in the paragraph context. We do the same for each
word in the query. In other machine comprehension models, this contextual representation layer is
implemented with a bidirectional LSTM (BiLSTM) that produces forward and backward outputs of
each word. However, BiLSTMs and other RNN models do not make adequate use of the state-of-
the-art parallel computing, as each input must be rolled out. We therefore attempt a CNN-based
approach to contextual representation.

We define a new CNN layer that allows each word to incorporate information from nearby and
faraway. A simplified version of our generalized convolution layer is illustrated in Figure 2.

The CNN layer consists of a pipelined stage of K convolutional steps, in order of increasing kernel
size k ∈ {2, . . . ,K}. At convolutional step k with input D(k−1) ∈ RFk−1×T (i.e., T words of
dimension Fk−1) we apply Fk convolution filters (or kernels) to produce an output ∈ RFk×T , and
we pipe the output into the next convolution step with kernel size k + 1. For example, suppose we
use the smallest meaningful kernel size 2 and apply F2 = 25 convolution filters to the paragraph
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Figure 2: CNN Layer. A pipelined series of convolutions with increasing kernel size.

context matrix [p1 . . . pN ] ∈ Rd×N . The output of this convolution step is a matrix in R25×N , which
becomes the input for the next convolution step with kernel size 3.

Take D(k−1) ∈ RFk−1×T to be the input to a convolution step for kernel size k. The output Dk ∈
RFk×T is calculated as follows:

1. For j ∈ {1, . . . , T} take Cj,k to be the k-sized window around the j-th input word, Cj,k =

D(k−1) [j : j + k − 1 : ∗].
2. For each filter Wi,k ∈ Rk×T , where i ∈ {1, . . . , F k}, calculate each element of the output

matrix Dk
ij = tanh

(
〈Cj,k,Wi,k〉

)
, where 〈A,B〉 is the Frobenius inner product.

3. Perform regularization steps before passing Dk as the input to the next convolutional step.

These steps are repeated for each kernel size k ∈ {1, · · · ,K}. Note that the dimension of the input
into the smallest kernel (k = 2) is F0 = d, the dimension our per-word vectors from the previous
layer. We produce the final CNN layer output by concatenating the outputs of each convolution step
to produce a matrix C ∈ Rf×T , where the resulting dimension d of each contextual representation
is the number of filters used, or f =

∑
k∈K Fk.

To create the contextual representation for the paragraph context and query, we pass the matri-
ces [p1 . . . pN ] ∈ Rd×N and [q1 . . . qM ] ∈ Rd×M through the CNN layer to produce matrices
C(P ) ∈ Rf×N and C(Q) ∈ Rf×M , respectively. In our model, we have made the hidden layer sizes
consistent by setting d = f .

The intuition behind this pipelined convolutional approach comes from image processing, where
convolutions of varying kernel sizes are performed on a single image. We also borrow inspiration
from the general pipelined RNN architecture: instead of having steps per word, we have steps per
kernel size; instead of taking input independently , for each step The convolutional pipeline starts by
intaking information from local context, or neighboring words; as the pipeline progresses, a wider
and wider context window is considered. Often there is pooling in-between convolutions to reduce
the dimensionality of the image, but in this case we must maintain the same number of words across
convolutions. We also pipeline convolutions instead of concatenating them like in character-level
CNN architectures [6] because we would like neighbors that are further than a kernel size away.

Therefore, a key point of this design is that the output of the CNN is a contextual representation
per-word; that is, we do not aggregate to produce a single contextual representation vector for each
context or query. This decision was made in order to support the existing Query2Context and Con-
text2Query attention models that require per-word context representations for the query and context.
Note that no highway networking is required[12], as the CNN layer incorporates information from
earlier and later words; furthermore, highway networking only works across a single vector.

3.4 Attention Flow Layer

We share information between the paragraph and question contextual representations once more
by implementing the two-way attention layer from BiDAF [2]. That is, we first produce a simi-
larity matrix S ∈ RN×N between each paragraph word and query word. We then produce one
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query vector per paragraph word i by weighting all query vectors by a softmax over the similar-
ity column corresponding to the paragraph word, Si ∈ RM . The resulting matrix Ũ ∈ × N is
the context-to-query (C2Q) attention. The query-to-context (Q2C) attention matrix P̃ ∈ Rd×N is
created in the same fashion as our relevancy degree from the filter layer, by giving the weighted
sum of the most important words in the paragraph with respect to the query. Finally, we con-
catenate and multiple matrices together element-wise to create a matrix G ∈ R4d×N , where
Gi =

[
Ci

(P ); Ũi;Ci
(P ) ◦ Ũi;Ci

(P ) ◦ P̃i

]
. For more details, please refer to Seo, et al. [2].

3.5 Modeling Layer

Once we have the matrix G containing the attention-refined paragraph representation, we then pro-
ceed with the modeling layer, which once again captures the interaction between the (attention-
aware) words in the paragraph context. We have implemented this as both a BiLSTM and as another
convolutional pipeline layer, and we discuss tradeoffs in our Experiments section.

The output of this layer is a matrix M ∈ Rd×T . This dimensionality comes naturally to the con-
volutional pipeline layer (recall we fix the output dimension to be f = d). For our BiLSTM imple-
mentation, we produce forward and backward states ∈ Rd/2 and then concatenate them together to
produce a correctly-sized vector per word.

3.6 Output Layer and Loss

Finally, we produce the probability distributions Pr(ast|Q,P ) and Pr(aend|Q,P ) for the start and
end indices, respectively, of our answer span. We take the input to be the modeling layer matrix, M .
As in BiDAF [2], the probability distribution vector ŷ1 ∈ RN of the start index is a simple linear
weighting by vector w1 ∈ Rd. We then pass M through a final CNN layer to produce M̃ , which
we then weight to find the end index’s probability distribution vector, ŷ2 ∈ RN . The loss is defined
as the sum of the average cross-entropy loss functions of (ŷ1, ŷ2) with the actual start/end indices,
(y1, y2), over all W paragraph-question pairs.

ŷ1 = softmax
(
wᵀ

1M
)

ŷ2 = softmax
(
wᵀ

1M̃
)

J(θ) = − 1

W

W∑
w=1

(
y
(w)
1 log ŷ

(w)
1 + y

(w)
2 log ŷ

(w)
2

)
3.7 Answer Generation

To predict the substring corresponding to an answer, we select the start and end indices with the
highest joint probability, where we assume independence; that is, we choose start and end indices
s and e that satisfy maxs,e [ŷ1,s · ŷ2,e]. We also enforce valid spans (s ≤ e) by using dynamic
programming to search the quadratic space of probabilities.

4 Experiments

4.1 Experiment Settings

We evaluate our models with the SQuAD dataset, which includes over 87,000 training instances,
over 10,000 development instances, and a large hidden test set . Using the default project assign-
ment input, we split our train set into 95% for training and 5% for validation and save the entire
development set as a secondary test set. We evaluate model performance with Exact Match (EM)
and F1 scoring [1].

Figure 3a summarizes the parameters of our model. We use 100-dimensional word embeddings
from GloVe pre-trained on Wikipedia and Gigaword [11] and use the default processing techniques
provided in the starter code (meaning we only use embeddings from our train and local val set).
We fix the paragraph length to be 500 words by truncating longer paragraphs and zero-padding
shorter ones. The query length is set to the max length of all queries in our dataset. The dimension
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Model parameters Size
Input dimension, de 100
Paragraph length, N 500
Query length, M max
Hidden layer dimension, d 200
CNN: # Kernels, K 8
CNN: # Filters/kernel, Fk 25

(a) Shared parameters

Model Dropout Batch size Epochs
CNN 0.2 100 10
BiLSTM 0.2 100 10
Regular BiLSTM 0.2 100 2

(b) Runtime parameters

Figure 3: (a) Model parameters (b) runtime parameters for the BiLSTM and CNN models.

of each hidden layer is fixed to 200, and we fix each CNN layer to have 8 different kernel sizes
(k ∈ {2, . . . , 9}), each with 25 filters.

We test two model designs; the first is a CNN model, which has CNNs at both the contextual
representation layer and the modeling layer, and the second is a BiLSTM model, which has CNNs
at the contextual representation layer and a BiLSTM at the modeling layer. In order to speed up the
runtime of the modeling layer BiLSTM, we insert another matrix WM ∈ R4d×d to scale down the
large attention flow matrix G prior to computing the BiLSTM, consequently reducing parameters.
We also run a third baseline model, a “regular” BiLSTM model which uses BiLSTMs at both of
these layers. All models use a CNN layer for decoding the end index. We apply a dropout of 0.2
(keep 0.8), and use a sample batch size of 100 (Figure 3b). We train the CNN and BiLSTM models
for 10 epochs each; the baseline BiLSTM model is used to compare runtime performance and thus
is only trained for 2 epochs.

For each convolutional step in all CNN layers, we perform batch normalization [13] prior to applying
the tanh nonlinearity, and perform dropout prior to passing the output to the next convolutional step
within the CNN layer. For all other layers, we insert dropout before passing to the next layer.

For all models, we minimize the cross entropy of the start and end probability distributions using the
ADAM optimizer [14] with a learning rate of 0.0001 and global gradient norm clipping of 5. Note
that Figure 3b shows that some models were only run for a few epochs; the purpose of running these
models was to analyze the epoch runtime and number of parameters, and not to optimize our scores
on the dataset.

4.2 Results and Analysis

We implement and run all of our experiments in TensorFlow 0.12.1 on a Microsoft Azure VM with
a Tesla M60 GPU. We summarize the results in Figure 4. Figure 4a shows the SQuAD train, val-
idation, and hidden test set performance of the CNN and BiLSTM models. We do not include the
BiLSTM performance on the test set as we had limited submissions on CodaLab. These perfor-
mance metrics are nothing to write home about, but they do perform better than the sliding window
baseline [1]. Furthermore, we spent minimal time analyzing the structure of the SQuAD data and
tweaking the hyperparameters, so we believe that data preprocessing techniques and further tuning
will aid our models in becoming competitive.

Qualitative performance of the models on the validation set is shown in Figures 4b and 4c. Figure
4b shows that CNN performs best when the answer is numeric, and worst when the answer is more
open-ended (when there is no question word/phrase, we classify as <other>). In addition, the
EM performance is relatively close to F1 for questions asking for people or names. The BiLSTM
performance is almost identical, most likely because the two models are trained on the same CNN
contextual representation layer. Figure 4c shows that both the BiLSTM and CNN models perform
worse as the answer span gets larger; however, BiLSTM performs marginally better, perhaps because
of gating mechanisms at the attention layer.

Figure 3 illustrates the runtime of each model as compared with a “regular” BiLSTM model that
uses an RNN contextual representation layer. Evidently, the CNN outperforms the BiLSTM by 2×
and the regular BiLSTM by 4× per epoch. There is substantial setup time on the GPU prior to any
training, which adds to the runtime of the first epoch. In particular, the more trainable parameters
and parallel computing required, the longer the underlying libraries work to optimize the use of the
GPU. However, as we train for longer epochs, this “start-up” time becomes negligible.
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Model Train Val Test
F1 EM F1 EM F1 EM

CNN 61.9 43 42.8 31.3 43.5 31.8
BiLSTM 46.9 29 40.3 27.2 − −
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(c)

Model Epoch 1 Epoch n # Params
(h:mm) (n ≥ 2) (×105)

CNN 1:20 0.22 13.6
BiLSTM 0:27 0:20 8.8
Regular 0:41 0:34 8.2BiLSTM
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Figure 4: Various illustrations of performance of the CNN and BiLSTM models (best viewed in
color). (a) The F1 and EM scores for each model on the SQuAD train, validation, and hidden test
sets; (b) CNN performance for different question types (frequencies of each question type shown in
parentheses); (c) Runtime and parameters for our models vs. a full BiLSTM model; (d) CNN and
BiLSTM performance for different answer lengths; (e) CNN performance over time; (f) BiLSTM
performance over time; (g) CNN and BiLSTM loss decay over time.

Finally, we analyze the CNN and BiLSTM model performance over training epochs. As shown in
Figure 4e, the loss decay over time of both the CNN and BiLSTM models closely follow each other.
This is perhaps because other trainable parameters outside of the modeling layer—for example,
the contextual representation layers—contribute more in the backpropagation step. The training
performances of CNN and BiLSTM (Figures 4f and 4g, respectively) do not vary much. However, a
gap between the training and validation performance starts to form early in the BiLSTM training. A
similar gap does not occur in the CNN model, possibly because we increase the regularization with
more dropout and batch normalization between convolutional steps.

5 Conclusion and Future Work

As our results show, the CNN approach greatly speeds up training time, but it is not completely ap-
parent that they provide exactly the same performance opportunities as other models. It is necessary
to perform ablation testing to fully understand the impacts of CNN on the machine comprehension
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task, by incrementally replacing CNNs with BiLSTMs at each layer in our architecture, and not just
at the modeling layer.

Furthermore, our training results are not stellar by any means and can definitely be improved with
further hyperparameter searching. We spent a lot of time fiddling with the learning rate before
remembering that the Adam optimizer automatically adapts learning rates during training. With
more work time, we would like to analyze the SQuAD dataset structure more, as it seems the leading
models perform heavy preprocessing on the SQuAD text to optimize and speed up the training
process. Furthermore, in order to fully understand the impacts of CNN on such a task, we should
perform ablation testing, where we replace a CNN with a BiLSTM at each possible layer in our
architecture.

Overall, we have successfully demonstrated that incorporating a pipelined convolutional neural net-
work can be a feasible method of encoding context-aware representations of bodies of text. More
analysis is required to see whether a convolutional approach can outclass the state-of-the-art algo-
rithms in machine comprehension, but we believe that this project is a good start. Machine compre-
hension is a complex, open-ended task, we hope that this paper encourages others to pursue unique
architectures.

Contributions

After over 70 hours of working by myself on this project (the last 50 hours were in the past four
days), I feel very accomplished! ,
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