
Coreferent Mention Detection using Deep Learning

Aditya Barua
abarua@

Piyush Sharma
spiyush@

Kevin Clark
(Mentor)

kevclark@

Abstract

A mention may or may not be coreferred elsewhere in the document. Identify-
ing those mentions that are corefered (called coreferents) is an important step in
many NLP tasks, like coreference resolution. To classify a mention as singleton
or coreferent using just one sentence is a challenging problem, but previous work
suggests that there are cues in a sentence which can be used to predict if a mention
it contains is corefered elsewhere in the document. We approach this problem in
two different ways. First, we try to a classify a mention candidate extracted by
rules-based methods as a coreferent or singleton using various hand-crafted fea-
tures from literature and a Feed Forward Neural Network (FFNN). Second, we
approach this problem as identifying coreferent mention boundaries in input se-
quences using Recurrent Neural Networks. This is a two step process where we
first detect mention heads, and then the mention boundaries. Both these parts are
trained and evaluated independently. The second approach removes our depen-
dency on an upstream rule-based mention extractor and hand-crafted features for
classification, some of which are expensive to compute. Our hypothesis is that the
second approach would be able to learn those hand-crafted features (and more)
automatically and perform better at the task. We observed that both of our ap-
proaches outperformed the baseline logistic regression model which uses all the
hand-crafted features of the first approach, showing that deep neural networks
can be used effectively for coreferent mention detection. We also observed that
the presence of hand crafted features from literature helps and the first approach
(FFNN) outperformed the second (RNN) by approximately 3 F1 points. We also
compare our results to published results for the coreferent mention detection task.

1 Introduction
Once an entity has been introduced in a text or a conversation, it may be referred to multiple times
later or never again. Consider the following document with just two sentences:

[Mary]1 was at [her apartment]2 reading [a book]3. [She]1 finished [it]3 at 8 PM.

[She]1, which refers to [Mary]1, and [it]3, which refers to [a book]3 are all coreferent mentions
because they refer to other entities within this document. But the mention [her apartment]2 is not
referred to again. Such a mention is called a singleton. It is a challenging and important task
to accurately separate out coreferent mentions from singleton mentions. A number of NLP tasks
use mention detection as first step, for example: the core NLP problem of coreference resolution
– identifying which entity a mention refers to. Identifying and filtering out singleton mentions
reduces the search space and hence can improve the accuracy of downstream coreference resolution.
In this project, we use two deep neural networks based approaches to detect coreferent mentions.
We find that both models perform better than a baseline logistic regression model (provided by our
mentor, Kevin Clark), surpassing it in terms of F1-score. We show that our models also perform
competitively with respect to the published literature which looks at this problem.

1



2 Background and Related Work
There has been some but not a very large amount of previous work on the topic of singleton detec-
tion for mention filtering. To the best of our knowledge, there have been three key papers on this
topic using the CoNLL-2012 Shared Task data. (Recasens et. al., 2013) use syntactic and semantic
features of the mention to predict singleton and coreferent mentions starting from rule based men-
tions (all Noun Phrases). These features cover the internal morphosyntax of the mention (what type
of quantifier it is, is it a pronoun? etc.), the grammatical role of the mention (the verbal role of the
mention and the semantic environment of the mention (presence of negation, presence of modality
etc) include features. They build a lifespan model, which is a logistic regression model using these
morphosyntactic features show that such a model can accurately separate singleton mentions from
coreferent mentions.
(Haagsma et. al. 2016) also start from rule based mentions and build a deep neural network for
predicting whether a mention is a singleton or not. They use word embeddings for the different
words in the mention as features. They find that such a model performs well on the mention filtering
task. They also present a variety of results on how the network architecture and model parameters
affect the performance of their model. (Moosavi et. al. 2016) use shallow features of the words
and an SVM with a polynomial kernel to predict singleton mentions. The features in their model
include lemmas of all the words included in the mention, Part-of-speech tags, Named-entity tags, the
mention string and features about the relationship of the mention to the document such as whether
the complete string of the mention appears elsewhere in the document.

3 Approach
Our project takes a two-pronged approach to the problem of coreferent mention detection:

1. Given a candidate mention, classify it as coreferent or singleton. There are methods
proposed in literature to extract mentions in text, e.g. (Lee et. al. 2011) uses a rule-
based approach. Also, the CoNLL shared task dataset contains greedy mentions. But
these mentions could be singletons or coreferents. Our first approach attempts to identity
the coreferents amongst these candidate mentions. We encode these mention sequences
into a fixed length vector using hand-crafted features successfully applied in prior work
(Recasens et. al., 2013), and train a powerful Feed Forward Neural Network (FFNN).
Section 3.3 discusses this approach.

2. Predicting coreferent mention boundaries in input sequences. If we want to remove de-
pendency on a candidate mention extractor and hand-crafted features, we need to process
all tokens in the input sequence, and identify coreferent mention boundaries. Another ad-
vantage is that context from the entire sentence would now be available, instead of just the
local context for the candidate mention to be classified. To process the variable length in-
put sequence, and identify coreferents therein, we use a Recurrent Neural Network (RNN).
Section 3.4 discusses this approach.

3.1 Hypothesis
Our hypothesis is that the second approach above that uses a RNN would be able to leverage the
global context of the entire input sentence, and learn complex representations of every word’s con-
text. This should overcome the need for hand-crafted features used in the first approach above.
While at the same time, we push the limits of what can be achieved with those hand-crafted features
using a deep FFNN with fully-connected non-linear hidden layers.

3.2 Description of the data
We use the 2012-CoNLL shared task data for training and evaluating our models. This data and
some data extraction helper scripts were provided to us by our mentor, Kevin Clark. This data has
documents from various sources. Each constituent sentence in a document has its words annotated
with Parts of Speech (POS) tags, Named-entity recognition tags (NER) tags. In addition, greedy
mentions for each document are available as a separate list. This list of greedy mentions include
all noun phrases, all pronouns and all named entities. Finally, all the mentions which are actually
coreferent, i.e they are mentioned somewhere else in the document are available as a list of gold
mentions. Here a breakdown of the dataset:

2



Dataset Documents Greedy mentions Coreferent mentions
Train 2,802 478,286 152,558
Dev 343 59,775 19,155
Test 348 61,881 19,764

In addition, this dataset is also annotated with the following additional features:

1. Word level features: POS, NER tags for each word.

2. Mention level features: 6 features for each greedy mention: mention type, is pleonastic,
contained in other mention, contained in other mention with same head, dep parent, dep
relation.

3. Recasens features: 11 features such as animacy, person, number, position etc. (Recasens
et. al 2013).

3.3 Predicting whether a candidate mention is coreferent

Figure 1: Feed Forward Neural Network for classifying a candidate mention as coreferent or not.

We use greedy mentions in the CoNLL 2012 shared task data as our pool of input candidate men-
tions. Each mention to be classified is encoded into a fixed length feature vector using the all the
features available in the input data (See Section 3.2). We get the word vectors for the first, last,
previous and next words, along with the head word for each greedy mention (Figure 1). These
are all concatenated to form a 5d length vector where d is the dimensionality of the word embed-
dings. Next, word vectors for each categorical feature such as the NER tag, mention type and the
Recasen’s features are appended to the feature vector. These are initialized to random values and
updated during training.

3.4 Identifying coreferent mention boundaries in sentences
To detect coreferent boundaries in input text without dependence on an external candidate mention
extractor, a token-level classifier is required. However, a simple binary classifier that assigns a label
of coreferent token or not, won’t be adequate for this problem, because this will not be able to detect

3



mention boundaries when two mentions are adjacent or nested. Hence we developed a two-step
system (see Figure 2):

Step 1: Detect mention-heads in input sequences
The head of a mention is defined by the dependency parse structure of the mention phrase. The intu-
ition is that the mention-head should have distinct characteristics (in terms of neighboring POS tags,
for example) as compared to the other tokens in the mention, or tokens outside any mention. Also,
previous research has shown that simply knowing the mention heads more accurately is sufficient to
enhance performance of coreference resolution systems. (Peng et. al. 2015).

Step 2: Given a coreferent mention-head, detect mention boundaries in the sentence
The intuition is that a neural network should be able to assign a binary label to every token in the
sequence as to whether that token belongs to the mention corresponding to the input mention-head.
Once we have all the tokens in a mention, the boundary is defined by the first and the last tokens.
Please note that we fill in any missing predictions to construct the longest mentions sequence.

3.4.1 Word features

As opposed to Section 3.3, hand-crafted feature for mention candidates are not available here. We
also decided to not use features derived from constituency parsing for this model because that is
expensive. Instead we rely on the RNN to learn the required features during training on complete
sentences. Each word in the sentence is featured by concatenating word-vectors for the lowercased
word, POS tag, Named Entity (NER) tag and original case of the token.

We use 100 dimensional word-vectors for all these features. Vectors for words are initialized with
pre-trained embeddings (GloVe, Pennington et. al.), and for other features (e.g. POS tag) are initial-
ized randomly. All word-vectors are updated during training.

Please note that for the second step (boundary detection), a binary feature corresponding to whether
the current token is a coreferent’s head or not, is appended to the features above. This feature is set
to 1 for exactly one token in an input sequence for boundary detection. If multiple heads were found
in the sentence in step 1, they all need to be processed separately in step 2. Please see Figure 2.

3.4.2 Model architecture

The same model architecture is used for both steps (i.e., head and boundary detection). They are
trained and evaluated independently using their corresponding train and dev datasets, which are
extracted from the CoNLL dataset used for this project. The only difference between the two models
is that the second one has an extra binary feature for each token, which is only set to 1 for the mention
head. In the description of models below, “label” refers to coreferent mention head, or coreferent
mention token for steps 1 and 2 respectively.

Model 1: RNN only

The basic model is a Recurrent Neural Network (RNN) which sequentially assigns a binary label to
each token. We use a bidirectional RNN to allow local context on both sides of a token be available
for its classification. The forward and backward outputs at each time step are concatenated and
projected to output logits using a fully connected layer. Please see Figure 5 in Appendix.

Model 2: Model 1 + final output states

Following the intuition that a “summary” of the entire sentence should help in classifying a token,
we extended the model to use the final states of the RNN. So, in this version (Figure 6 in Appendix),
we concatenate the sum of forward and backward outputs of the bidirectional RNN with the sum of
final forward and backward states. The concatenated vector is then projected to output logits.

Model 3: Model 2 + feed-forward network with a hidden layer

Our final model is a further extension of the previous model. It adds a small fully-connected hidden
layer before projection to the final output logits (Figure 3). This non-linear hidden layer will allow
complex interactions between the RNN outputs (local context) at a time step with the final RNN
states (global sentence context).

4



Figure 2: Two step process to identify coreferent mention boundaries in a sequence. First, the
mention heads are detected. Then for each head, the mention boundaries are identified. The two
models are trained and evaluated independently, then put together for the end-to-end system.

4 Experiments
4.1 Baseline
Our baseline is a logistic regression that uses every feature described in Section /refsec:data-desc.
It was provided by our mentor, Kevin Clark. This model has a precision of 48.41, a recall of 90.01
and an F1-score of 63.31 on the test set. In this model, the threshold for the probability to define a
true class has been set so that the recall is at or higher than 90.0. This model is also built on greedy
mentions and attempts to predict whether a mention is coreferent or not.

4.2 Approach 1: Coreferent Mention Detection from Greedy mentions
This section describes our experiments with a Feed Forward Neural Network (FFNN) for coreferent
mention detection from greedy mentions. Our experiments were over two broad areas:

Neural Network Architecture Hyper-parameters Optimization
Source and dimensionality of word vectors Cost function

Number of hidden layers Learning rate
Activation functions: ReLu, tanh, sigmoid etc. Optimizer

Size of hidden layers
Dropout probabilities

Because there are so many different hyper parameters to be tuned, we adopt the framework of
(Haagsma et. al. 2016) by adopting a baseline model. To determine the effect of changing one
of the hyper parameters, we keep all the other hyper parameters constant and thereby measure the
specific effect of tuning a single parameter. We evaluate each of these models on the dev set in order
to identify the best model. In addition to the model hyper-parameters, another parameter that can be
varied is the probability threshold for making the final decision.

Baseline FFNN model: The baseline model (B) has the following parameters: GloVe 6B to-
kens and 300d word vectors; 1 hidden layer; ReLu activation function; 400 hidden units; dropout

5



Figure 3: The sum of forward and backward outputs of the bidirectional RNN is concatenated with
the sum of final forward and backward states. The concatenated vector is then projected to output
logits using a fully connected hidden layer.

probability=0.5; Xavier initializations for weight matrices; C=1; learning rate=0.0001; Opti-
mizer=AdamOptimizer; Batch size=2000. Figure 4 in the appendix shows that the precision recall
curve for this model is always at or above the baseline for all value of recall.

Source and dimensionality of word vectors: We explored multiple GloVe datasets and evaluated
their effect on metrics on the dev test (Table 1). We found that the dev F1-score increases with
increasing dimensions for the word vectors up to the point of 200 dimensional word vectors. But
beyond that, the dev F1 score drops a little bit. Higher dimensional word vectors encode more
semantic information and hence provide a more granular and nuanced representation of the word.
Such a granular embedding is likely to work better than a coarser embedding which likely loses
key information, but added granularity beyond a certain limit might lead to overfitting. We also
saw that using more tokens leads to better results. This is probably because more words from the
mention can now be mapped on their real embeddings instead of being mapped onto the unknown
word emebdding ”UNK”.

Number and size of hidden layers:In Table 3, we see that the best results are achieved by a single
layer network with a moderate number of hidden neurons (400). One hypothesis for why this hap-
pens is that true function which of the features which determines whether a mention is coreferent or
not is not extremely complex. This explains why logistic regression performs so well because the
output classes are possibly linearly separable. As a result, complex, multi-layered networks with
lots of hidden layers overfit the noisy training data and don’t perform very well. The sweet spot of
the number of neurons for a single layered network seems to be around 400 and less or more neurons
than that don’t do very well. Multi-layered networks in general don’t seem to be performing very
well in comparison to the single layered network.

Activation functions: In Table 2, we show the results from experiments with 4 different activation
functions. ReLU provides the best results. This is possibly because ReLu doesn’t suffer from the
vanishing/exploding gradients problem which a lot of the other activation functions do.

Dropout probabilities: Network complexity might be over fitting the data. That may be the reason
why high dropout seems to help our models. Table 4 For both a small network with 400 neurons and

6



Dataset Precision Recall F1-score
Wiki 6B 50d 71.41 75.40 73.35
Wiki 6B 100d 71.09 76.02 73.47
Wiki 6B 200d 71.04 76.39 73.61

Wiki 6B 300d (B) 72.47 74.68 73.55
Wiki 42B 300d 71.68 75.77 73.67

Table 1: Source and dimensionality of embeddings.
Activation function Precision Recall F1-score

ReLU (B) 72.47 74.68 73.55
Sigmoid 79.12 63.49 70.45

tanh 81.68 58.66 68.28
elu 74.28 70.48 72.33

Table 2: Different activation functions.

Dataset Precision Recall F1-score
[50] 71.42 74.59 72.97

[100] 71.63 74.63 73.10
[400] (B) 72.47 74.68 73.55

[500] 72.46 74.66 73.54
[1000] 71.23 73.71 72.45
[50,50] 79.34 62.60 69.98

[400,400] 72.46 74.13 73.29
[1000, 1000] 72.21 74.03 73.11
[50,50,50] 69.82 75.16 72.39

[400,400,400] 72.18 74.48 73.31
[1000,1000,1000] 77.35 68.16 72.46

Table 3: Number and size of hidden layers. [a, b, c] in-
dicates a network with 3 hidden layers of size a, b and c
respectively.

Network size Drop
prob

Precision Recall F1

[400] 0.25 72.12 74.22 73.16
[400] (B) 0.5 72.47 74.68 73.55
[400] 0.75 72.33 75.08 73.68
[1000, 1000,
1000]

0.25 71.88 73.35 72.61

[1000, 1000,
1000]

0.75 72.77 74.98 73.68

Table 4: Network size and dropout probability.

Learning rate P R F1
0.1 98.82 8.34 15.39
0.01 70.87 74.03 72.41
0.001 72.13 73.34 72.73
0.0001 72.47 74.68 73.55
0.00001 (B) 72.47 75.68 74.55
Adaptive
learning rate

76.75 69.71 73.06

Table 5: Learning rates.

a large 3-layered network with 1000 neurons in each layer, a high dropout value of 0.75 improves
performance.

Learning Rate: Experiments with the learning rate were very interesting and quite informative
(Table 5). It is this category of experiments which gave us the best performing model (learning
rate=0.00001). The low optimal learning leads us to think that the cost function for this problem is
very non-convex and moving around by too much in the feature space leads to quickly moving away
from the global optimum. Also, there are likely to be many local optima which results in runs with
larger learning rates ending up stuck in a local optima. Finally, we also tried a learning rate with
an exponential decay. Such a learning rate starts out large (initialized at 0.0001) and then decays
exponentially with each iteration. The rationale is that as we approach the optimal value, we take
smaller and smaller steps so as to not overshoot it. This performed better than the other learning
rates, but not as good as the best learning rate of 0.00001.

Optimizer We tried 3 different optimizers, the Adam Optimizer, FtrlOptimizer and the AdaGradOp-
timizer. The AdamOptimizer provided the best results with a resultant F1-score of 73.55 for the
baseline FFNN. The AdaGradOptimizer performed quite poorly in comparison resulting in an F1-
score of 68.22.

4.3 Approach 2: Identifying coreferent mention boundaries in sentences
The RNN state is fixed at 512 in all case, and the fully connected hidden layer (if used) in feed-
forward network is 64. The maximum sequence length is set at 128, dropout rate is 0.5, gradient are
clipped to a global norm of 5.0, and batch size for training is 32. 100 dimensional GloVe (Pennington
et. al.) word-vectors are used. Loss computation is weighted to penalize False Negatives more than
False Positives to counter label bias (there are far more “not a coreferent mention head” tokens than
actual mention heads, and we want a reasonably high recall for the downstream task).

As noted in section 3.4.2, the two models involved in the two steps to identify mention boundaries
from sentences are trained and evaluated separately. The models are trained on train dataset, and

7



Head Detection Boundary Detection End-to-end
Pre Rec F1 Pre Rec F1 Pre Rec F1

Model 1 66.30 81.90 73.28 83.04 82.18 82.61 59.81 72.36 65.49
Model 2 67.21 82.33 74.00 86.52 85.66 86.09 62.46 75.01 68.16
Model 3 67.76 83.06 74.64 89.16 88.31 88.73 64.13 77.10 70.02

Table 6: The performance of the head detection and boundary detection models evaluated indepen-
dently on the test set. The last set of columns show the end-to-end performance on the test set when
the two models were put together by feeding the output of head detection to boundary detection.
Each row is a different model described in Section 3.4.2, with increasing complexity. Model 1:
RNN only; Model 2: Model 1 + RNN final output states; Model 3: Model 2 + feed-forward network
with a hidden layer

hyperparameters tuned on dev dataset. The two models were then put together by feeding output of
head detection module into boundary detection. Table 6 shows the final performance of all model
architectures on test dataset.

We see that Model 2 performs better than Model 1, and Model 3 better than Model 2 at both the
tasks, and also the end-to-end task. So, adding the sentence context with the final hidden states
helped, and so did adding a hidden layer. This was expected because as the model gets increasingly
complex, it can learn more complex mappings from input sequences to output labels.

Output analysis: Example where we did well
Consider the following input sentence from the test set. Mentions boundaries are marked with “[]”
and the head is in bold font.

Even as [the paper] asked for [the public ’s] support [it] was unable to answer [its] questions .

Head detection step predicted all the heads correctly (highlighted in bold):

Even as the paper asked for the public ’s support it was unable to answer its questions .

Boundary detection step also correctly predicted the following boundaries for each head (highlighted
in bold):

Even as [the paper] asked for the public ’s support it was unable to answer its questions .
Even as the paper asked for [the public ’s] support it was unable to answer its questions .
Even as the paper asked for the public ’s support [it] was unable to answer its questions .
Even as the paper asked for the public ’s support it was unable to answer [its] questions .

It is interesting to note that the model was able to correctly predict that “support” and “questions”
are not part of the mention, though they are part of the noun phrase that contains the mention.

Output analysis: Example where we did well with nested mentions
Consider the following sentence with nested mentions.

right now [I] mean [I] do want to keep [[my] American citizenship]

Head detection step predicted the following heads (highlighted in bold):

right now I mean I do want to keep my American citizenship

Boundary detection step predicted the following for each head (highlighted in bold)

right now [I] mean I do want to keep my American citizenship
right now I mean [I] do want to keep my American citizenship
right now I mean I do want to keep [my] American citizenship
right now I mean I do want to keep [my American citizenship]

So our approach works for nested mentions too.

8



Output analysis: Example were head detection failed
Consider the following sentence:

A big reason for the chemical price retreat is overexpansion .

This has no coreferent mentions. But the head detection model predicted:

A big reason for the chemical price retreat is overexpansion .

This is because the head detector does not have visibility into the entire document, and hence, cannot
know for sure if these entities were coreferered elsewhere in the document. This is the limitation of
working at the sentence level, and hurts the overall precision.

Output analysis: Example were boundary detection failed
Consider the following sentence with the heads:

[CNN] ’s viewer habits have been molded by its format .

For the first head above, boundary detection model predicted:

[CNN ’s] viewer habits have been molded by its format .

This has an extra token which is incorrect.

5 Overall Results
In this section, we present our overall results and compare them to the literature. We see that both
the FFNN and the RNN outperform the baseline logistic regression model. 1 Please note that for
some papers in literature that we are comparing with only reported their results on the dev set. So,
we report our results on both dev and test, and compare the appropriate numbers with past work.

Table 7: test CoNLL 2012-shared task data

Dataset P R F1
Baseline logistic
regression

48.42 90.01 63.31

FFNN (Sec. 3.3) 74.16 76.16 75.15
RNN (Sec. 3.4) 64.13 77.10 70.02
Greedy mentions 29.89 93.58 45.31

Table 8: dev CoNLL 2012-shared task data

Dataset P R F1
Baseline logistic
regression

47.96 89.99 62.57

FFNN (Sec. 3.3) 76.12 71.24 73.60
RNN (Sec. 3.4) 62.54 76.07 68.64
Recasens et.al.
2013

72.20 67.88 69.97

Haagsma et. al.
2016

7.25 63.54 70.54

Moosavi et. al.
2016

83.76 71.76 77.30

6 Conclusions and Future Work
Our hypothesis was that an RNN model that processes the entire input sentence would perform
better than a FFNN that uses hand-crafted features from literature for previously extracted candidate
mentions. We expected that the RNN would learn those features (and more) from the input sequence
itself. But we saw in our results above that using those hand-crafted features with a powerful
feed-forward neural network outperformed by a few F1 points the RNN model which doesn’t use
those features. However, both models outperformed the baseline with a big margin.

1When evaluating on the dev set, we present the results for both models when we just predict that a mention
is coreferent if prob >= 0.5.

9



It is worth noting that the RNN approach worked, is promising and has many advantages over the
other approach:

1. It is not limited by the performance of an upstream candidate mention extraction system.
2. It is applicable to tasks where rule-based candidate mention detection is difficult, for ex-

ample, nested named entity recognition [Finkel et. al. 2009].
3. Constituency parsing is not required. This is a very expensive step required to generate

a CoNLL feature (is noun phrase). This step could potentially become the bottleneck in
performance of a latency sensitive system.

Further extensions of the RNN model are possible. Adding document level features, such as whether
the tokens of a mention occur in another sentence in the document (Moosavi et. al.), or an RNN that
encodes the entire document, could lead to large improvements possibly beating state of the art.

7 Acknowledgments
We would like to thank everyone on the teaching staff of CS224N for putting together a great class
this year. We are thankful to Kevin Clark, our project mentor for providing feedback regularly.
We used data and baselines provided by Kevin. We used utility functions and code structure from
homeworks in our project. So, a big thanks to everyone on the teaching team who contributed to it.

8 Contributions
Both of us brainstormed on both the approaches above. Aditya implemented the FFNN approach
(described in Section 3.3), and Piyush implemented the RNN approach (described in Section 3.4).
We both communicated regularly with our project mentor (Kevin Clark) to share updates and get
feedback.

References

[1] Marta Recasens, Marie-Catherine de Marneffe, and Christopher Potts. 2013. The Life and
Death of Discourse Entities: Identifying Singleton Mentions. In Proceedings of the NAACL.

[2] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky. 2013. Stanfords Multi-Pass Sieve Coreference Resolution System at the CoNLL-2011
Shared Task. In Proceedings of the CoNLL-2011 Shared Task, 2011.

[3] Kevin Clark and Christopher D. Manning. Improving Coreference Resolution by Learning
Entity-Level Distributed Representations. In Proceedings of the ACL.

[4] Kevin Clark and Christopher D. Manning. Deep Reinforcement Learning for Mention-Ranking
Coreference Models. In Proceedings of EMNLP.

[5] Haagsma, Hessel. Singleton Detection using Word Embeddings and Neural Networks. (2016).

[6] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors
for Word Representation.

[7] Bengio, Yoshua.,Learning deep architectures for AI,Foundations and trends in Machine
Learning,2,1,1-127,2009

[8] Moosavi, Nafise Sadat and Strube, Michael, Search Space Pruning: A Simple Solution for
Better Coreference Resolvers, Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, June 2016.

10



[9] Peng, Haoruo, Kai-Wei Chang, and Dan Roth. ”A Joint Framework for Coreference Resolution
and Mention Head Detection.” CoNLL. Vol. 51. 2015.

[10] Jenny Rose Finkel and Christopher D. Manning. 2009. Nested named entity recognition. In
EMNLP, pages 141150.

9 Appendix
Precision Recall curve for baseline FFNN vs Baseline Logistic Regression model.

Figure 4: Precision-Recall curve for the baseline Logistic regression model (AUC=50.22) vs the
Baseline FFNN (AUC=51.57). The FFNN is visually seen to be at least at or higher than the baseline
logistic regression model at all levels of recall.

Figure 5: The forward and backward outputs of the bidirectional RNN are concatenated and pro-
jected to output logits.

11



Figure 6: The sum of forward and backward outputs of the bidirectional RNN is concatenated with
the sum of final forward and backward states. The concatenated vector is then projected to output
logits.

12


	Introduction
	Background and Related Work
	Approach
	Hypothesis
	Description of the data
	Predicting whether a candidate mention is coreferent
	Identifying coreferent mention boundaries in sentences
	Word features
	Model architecture


	Experiments
	Baseline
	Approach 1: Coreferent Mention Detection from Greedy mentions
	Approach 2: Identifying coreferent mention boundaries in sentences

	Overall Results
	Conclusions and Future Work
	Acknowledgments
	Contributions
	Appendix

