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Abstract 6 

We re-implement the Grave et al. Neural Cache on our own LSTM 7 
model, reproducing the perplexity results and performing additional 8 
hyper parameter tuning. We additionally test the perplexity of different 9 
authors’ text on other authors’ trained LSTMs with the Neural Cache 10 
implementation. 11 

 12 

1 Introduction 13 

Language models are a vital tool for Natural Language Processing, underlying many 14 
higher-level applications like question answering and machine translation. The task is 15 
simple: given a sequence of words, compute the conditional probability of the next word. 16 
This can be well approximated by neural networks, especially LSTM models that can 17 
capture long-term dependencies. In the quest to improve these models’ performance, one 18 
approach is to increase the size of the LSTM hidden layer, or stack multiple layers to give 19 
the model more “memory.” While effective, this comes at the cost of many more 20 
parameters, and therefore the need for longer training times and more data.  21 

One alternative is memory-augmented networks. These systems give the network access 22 
to external, non-parameterized memory at test-time. These allow the network to 23 
remember more context and improve performance without the burden of additional 24 
parameters. An especially simple, and remarkably performant, memory-augmented 25 
network architecture is Grave et al.’s Continuous Cache [1]. This module has several 26 
advantages: it is straightforward and fast, runs entirely at test-time with no training 27 
required, and can be attached atop any Recurrent Neural Network without modifying the 28 
underlying architecture. Furthermore, it can predict Out-of-Vocabulary words after 29 
encountering them just once in the test input and storing them in the cache. And most 30 
importantly, it consistently reduces language models’ perplexity on standard benchmarks. 31 

Our project consists of a reimplementation of Grave et al.’s work and a comparison on 32 
the Wikitext2 perplexity benchmark. We perform extensive hyper parameter optimization, 33 
conducting a grid search over the cache’s alpha and theta parameters to tune its 34 
performance. Finally, we apply this optimized model to literary analysis, fine-tuning the 35 
Wikitext2 LSTM model on works by Charles Dickens, Mark Twain, and H.G. Wells and 36 
examining each model’s perplexity on the other authors’ work, aiming to identify hot 37 
spots and determine if any semantic or structural characteristics are consistent between 38 
authors.  39 

 40 



2 Background/Related work 41 

The Neural Cache model draws from two main inspirations: memory-augmented 42 
networks and cache models. Memory-augmented networks – the most prominent of which  43 
is DeepMind’s Neural Turing Machine  [2] – learn to read and write from an external 44 
memory store. These read and write operations are fully differentiable, so the use of 45 
memory is optimized like any other part of the network, via gradient descent. Memory-46 
augmented networks are able to store much more information than un-augmented 47 
networks, boosting their performance on context-sensitive tasks like language modeling. 48 
However, according to Grave et al., these networks are computationally expensive, and 49 
this overhead limits the models’ practical memory capacity. So, Grave et al seek a more 50 
lightweight approach, one that can store information like a memory-augmented network 51 
but without the computational cost. 52 

In this vein, Grave et al. re-introduce the concept of a cache. First implemented by Kuhn 53 
and De Mori [3] in 1990, language model caches store a window of previously 54 
encountered words. Intuitively, if a word appears once, it is more likely to appear again. 55 
For instance, a recipe containing flour is likely to repeat the word “flour” many times. 56 
Cache models take advantage of this property and assign higher prediction probabilities 57 
to words already stored in the cache. These modules are fast, require no training, and 58 
unlike memory-augmented network architectures, can be grafted onto existing models 59 
without modification.  60 

Grave et al.’s Neural Cache can be considered a synthesis of these two ideas. Much like 61 
Kuhn and De Mori’s work, the Neural Cache is a simple cache tacked onto the top of an 62 
already-trained model. But unlike Kuhn and De Mori’s cache, which weights all cached 63 
words equally, the Neural Cache weights each word by its hidden state similarity. When 64 
each word is added to the cache at runtime, it is associated with the LSTM hidden state 65 
that produced it. To predict the next word, the text is first run through the unmodified 66 
neural network. Then, the hidden state of this network is input to the cache. This state is 67 
dotted with each hidden state in the cache, and the associated words’ probabilities are 68 
weighted by this product (and theta and alpha hyper parameters). The hidden state 69 
weighting acts much like a memory-augmented network by linking memory access to the 70 
internal state of the network. But there is none of the computational overhead, as the 71 
memory read/write operations need not be learned. In a sense, the Neural Cache is the 72 
best of both worlds: the power of memory augmentation with the speed of a cache. 73 

 74 
3 Approach 75 

Our experiments are divided into two phases. In the first phase, we train an LSTM 76 
language model on the Wikitext2 corpus, with additional fine-tuned models trained on 77 
works by Charles Dickens, Mark Twain, and H.G. Wells. In the second phase, we apply 78 
the cache at test-time, feeding the test set predictions of an already-trained model through 79 
our cache implementation. 80 

Our language model is a 1024-unit LSTM implemented with Keras. It consists of a fully-81 
connected embedding layer transforming the vocabulary size to the 1024-length hidden 82 
state size, a single LSTM layer, and a fully-connected output layer transforming the 83 
LSTM’s hidden state back to a vocabulary-sized logits vector. Finally, the logits are 84 
passed through a softmax function to compute a probability distribution for the next 85 
word.  86 

Our sequence length (the number of unrollings through time) is 30, and our batch size is 87 
20. We apply a categorical cross-entropy loss at every step in time: at each step, the 88 
network is trained to predict the next word in the sequence. We use the ADAM optimizer 89 
with a learning rate of 1e-3 and a per-epoch weight decay of 2e-5 over 50 epochs.   90 

At test-time, we run the network on the entire test set and record – for each word - the 91 
softmax output, the LSTM’s hidden state, and the raw logits. The softmax output is used 92 
to benchmark the baseline, un-cached model, and the logits and hidden state are fed into 93 
our cache implementation. 94 



Our cache implementation integrates the cache probability below into the probability 95 
distribution of the vocabulary: 96 

 97 
If word w is in the cache, the similarity product between the current hidden state and the 98 
hidden state stored in the cache with word w is calculated and multiplied by hyper 99 
parameter theta. The idea here is that if a word has been seen previously as the “true” 100 
output word of a hidden state and that hidden state is similar to our current hidden state, 101 
the word w is more likely to be the next output word. Below, the cache probability is 102 
factored into the probability distribution: 103 

 104 

 105 
The above equation is referred to as global normalization, and represents a softmax over 106 
the vocabulary and the words in the cache. In another formulation, the vocabulary and 107 
cache probability are linearly interpolated with a lambda parameter as follows: 108 

 109 

 110 
We focused on the global normalization probability distribution, computing the 111 
probability for each word, then taking the softmax over the vocabulary.  112 

 113 
3 . 1  G l o b a l  n o r m a l i z a t i o n ,  w i t h  v e c t o r i z a t i o n  114 

Calculating perplexity requires only the model’s probability estimate of the true class. 115 
Given the large vocabularies involved – Wikitext2 contains over 33k words – it is 116 
significantly faster to compute a probability for a single word rather than the entire 117 
vocabulary. So, we exploit this property to achieve a computational speedup.  We 118 
vectorized the cached hidden states and the output weights to calculate the sum over the 119 
vocabulary and the entire cache, which is the denominator of the softmax equation, with 120 
only two matrix multiplications. We are able to use this exploitation because when we 121 
sum the denominator by word, we search the cache to find all pairs containing that word 122 
and use that pair’s corresponding hidden state. Because we are summing over all words, 123 
we will search for each word once, and therefore we will retrieve each cache entry once. 124 
Therefore, we can circumvent this individual search by simply taking all hidden states in 125 
the cache and vectorizing them to be multiplied by the current hidden state. This 126 
decreased runtime over our model that found each cache probability individually and 127 
summed those individual probabilities. 128 

 129 
3 . 2  G l o b a l  n o r m a l i z a t i o n ,  w i t h o u t  v e c t o r i z a t i o n  130 

Our vectorization approach is useful for faster perplexity calculations, but for 131 
applications such as text generation, we need the probability estimates for every word in 132 
the vocabulary. First, we initialize this vector to the neural network’s probability estimate 133 
for each word. Then, we simply loop over each word in the cache, computing a cache 134 
probability for that word and adding it to the corresponding row in the initialized vector. 135 
While this method is slower, it lets us generate text and serves as a vital sanity check for 136 
the computational shortcut described in Section 3.1. 137 

 138 

 139 



4 Experiments  140 

The experiments we performed emulated Grave et al.’s experiments. The most important 141 
benchmark and performance to test was perplexity. We chose the Wikitext2 dataset to test 142 
on. Of all the datasets Grave et. al. tested on, the Wikitext2 data set was the smallest, and 143 
therefore the easiest for us to reproduce tests on. The different computational techniques 144 
described in Section 3 produced identical results, but for the sake of computation time, 145 
we ran the tests using the Section 3.1 “shortcut” technique with vectorized matrices. 146 

4 . 1  P e r p l e x i t y  147 

 148 

Model 
 

Testing 

Neural cache model (size = 100) (Grave et. Al 2016) 81.6 

Neural cache model (size = 2000) (Grave et. Al 2016) 68.9 
Neural cache model (size = 100) (Our model) 82.2 
Neural cache model (size = 500) (Our model) 69.9 
Neural cache model (size = 2000) (Our model) 64.7 

Table 1: Best perplexity results on Wikitext-2 149 

 150 

We saw similar numbers to the Grave et. al. paper. Our perplexities are within a few 151 
points of theirs, and differences can be explained by the difference in the base models. 152 
Our base LSTM models are separate implementations (different weight initialization, 153 
learning rate, and non-adaptive softmax function) so the perplexities should not be 154 
identical. However, our model follows the same trends, which can be seen more clearly 155 
below. 156 

 157 
4 . 2  C a c h e  s i z e s  158 
 159 

 160 
Figure 1: Perplexity graphed with different cache sizes using the 161 

Wikitext2 test set, alpha and theta set at 2 and .2, respectively. 162 



 163 
Figure 2: Perplexity graphed with different cache sizes using the 164 
Wikitext2 test set, alpha and theta set at 1 and 3, respectively 165 

 166 

In the second graph, we selected hyper parameters alpha and theta that are most optimal 167 
for the size 500 cache. We weight the cache too much at 5000, so we actually see a rise in 168 
perplexity after a cache size of about 1500. A smaller theta is better for our larger cache 169 
sizes, as we can see in the first graph. Our first graph shows hyper parameters tuned to a 170 
larger cache of size 2000. We see a less steep decline in the beginning, but a decline still 171 
to size 5000. 172 

 173 
Figure 3: The Grave et al. Neural Cache’s perplexity on 174 

Wikitext103 graphed with different cache size 175 

 176 

As we see from the above graph of perplexity calculated on wikitext103 by the Grave et 177 
al. Neural Cache, our implementation has the same trend as the Grave et al. cache. An 178 
important disclaimer here is that the data sets are different, but Grave et al. did not 179 
include a wikitext2 graph and the graph above is still useful as a comparison. We see the 180 
divergence from the baseline follow a similar trend, and we even see the uptick at the end 181 
when the cache size surpasses the optimal hyper parameters. Our graph with hyper 182 
parameters alpha = 3, theta = 3 follows the same trends. 183 

 184 
4 . 3  H y p e r  p a r a m e t e r  t u n i n g  185 

Hyper parameter alpha weights the Neural Cache. Hyper parameter theta weights the 186 
similarity product within the cache. Below, we show two graphs: one with perplexities 187 
calculated using a cache of size 500 and one with a cache of 2000. As we can see, our 188 
optimal hyper parameters decrease when cache size increases. We additionally found that 189 
our most optimal theta was in a range approximately one order of magnitude above the 190 



optimal theta on the Grave et al. Neural Cache. Our underlying model was different, so 191 
this difference makes sense. Unfortunately, it is somewhat hard to compare the graphs we 192 
produced below upon first glance with the Grave et al. graph because our scaling is so 193 
much more extreme than theirs is. In general, however, our hyper parameter graphs 194 
follow the same trend that a larger theta between 2-4 (for Grave et al., .15-.3) and an 195 
alpha ranging from 0-2 produce the best perplexity results for the model. 196 

 197 

   198 
Figures 4 and 5: Our hyper parameter optimization results 199 

 200 
Figure 6: Grave et al.’s hyper parameter optimization results 201 

 202 

Another thing to note is that our alpha has a slightly bigger impact than the paper’s alpha. 203 
We were unsure about why this was the case, but we supposed that since our base models 204 
are not identical, different parts of the cache would weight differently since the hidden 205 
state is dependent on the original model. Our base model was slightly worse, perplexity-206 
wise, than Grave et al’s, so the cache as a component having a larger weight with a higher 207 
optimal alpha value than they found makes sense. 208 

 209 
4 . 4  R e s u l t s  210 

We are confident in our reproduction. The downward trend on our perplexity graphs is 211 
extremely similar to the paper’s cache size-vs-perplexity trends. We also observed 212 
differing optimal hyper parameters for different cache sizes, which suggests that cache 213 
size materially affects performance and must be tuned as part of a larger system. Given 214 
that this section of our work is a re-implementation of an existing paper, there is not 215 
much to report other than the success of our implementation. The perplexity numbers 216 
match up (within a reasonable margin owing to differing base models), and we are 217 
satisfied that our Neural Cache implementation is sound. With the Neural Cache in our 218 
toolkit, we turned to more lighthearted literary applications. 219 

 220 
5 Literary applications 221 

Our primary application for the Neural Cache LSTM model was evaluating author 222 
similarity. We trained separate models for several authors, and used these models’ 223 
perplexity on the other authors’ work as a proxy for similarity. Intuitively, if a language 224 



model of Author A has a low perplexity on Author B, then A and B must have relatively 225 
similar styles and word choice. At a finer level, we evaluate perplexity on length-30 226 
subsequences, and can thereby determine which sequences match, or do not match, a 227 
particular author’s style. Note that this did not specifically require the Neural Cache – 228 
any language model would have done the job – but we wanted to take advantage of the 229 
Neural Cache model’s superior performance. 230 

 231 
4 . 1  Tr a i n i n g  a u t h o r  m o d e l s  232 

We created corpora for H.G. Wells, Mark Twain, and Charles Dickens by concatenating 233 
their novels from the University of Michigan’s cleaned subset of Project Gutenberg [4]. 234 
The works were concatenated in lexicographic order by title, and then split into train 235 
(80%), validation (10%), and test (10%) sets. We then fine-tuned our Wikitext2 model on 236 
each author’s corpus. Any author words not in the Wikitext2 dataset were converted to 237 
the <unk> token. After experimenting with text generation, we were disappointed to find 238 
that the sentences produced were largely unintelligible, and not obviously discernable 239 
between authors. However, given that our focus was on similarity metrics and not text 240 
synthesis, we pressed onward. 241 

. 242 
4 . 2  P e r p l e x i t y  h e a t  m a p s  243 

After fine-tuning each author LSTM, we ran each model on the other authors’ test sets, 244 
generating a heat map of perplexity on 30-word sequences within the text. We expected to 245 
find “hot spots” - certain paragraphs or sections that were particularly similar or 246 
dissimilar between authors. 247 

             248 
In fact – and disappointingly for us - the majority of the heat maps have no discernable 249 
pattern, regardless of author model or input corpus. There may be a few reasons for this. 250 
First, the model trained on Wikitext2 could be dominant since our author data sets were 251 
relatively much smaller. The authors we chose were also fairly similar. We stayed away 252 
from Shakespeare since his style is such a drastic change from the above authors, but in 253 
retrospect that would have perhaps been a more interesting comparison. Additionally, a 254 
lot of tokens in the author texts were set to <unk>. However, we noticed a high-perplexity 255 
spike at the end of Twain heat maps across all author models.  After manually inspecting 256 
the Twain input, we discovered that the final novel in the corpus had a different newline 257 
structure than the other sections. To investigate the effects of new lines on our perplexity, 258 
we re-ran our analysis after removing all newlines. Prior to new line removal, the Twain 259 
model on the Twain corpus exhibited 55.2 perplexity. After removing newlines, 260 
perplexity spiked to 81.9. Our model seems to have latched onto the easiest feature to 261 
train on and weighted it more than other, more nuanced semantic and structural 262 
differences unique to each author, causing the differences between the author-to-author 263 
heat maps to be small. Care must be taken to ensure that input is uniformly formatted and 264 
conclusions are not made before digging into data. 265 

 266 



6 Conclusion 267 

As neural network language models continue to improve, it is likely that memory will 268 
continue to play a larger and larger role. But as the Neural Cache has shown, these 269 
memory extensions need not be complicated or computationally intensive. They can be 270 
simple, fast, and adaptable to existing models. We successfully implemented the Neural 271 
Cache and confirmed its impressive performance benefits. 272 

Our literary experiments did not yield any especially novel (pun intended) results. 273 
However, they served as an important reminder that LSTMs (even with the Neural Cache 274 
implemented) tend to grab onto the “easiest” set of features, in this case, the <eos> 275 
tokens. It’s important to go through data sets to see how text is formatted before drawing 276 
extrapolations about structural or semantic significance 277 

In summary, we successfully implemented a brand-new, high-performance extension to 278 
an LSTM language model. We are excited to see the Neural Cache – and future memory-279 
based developments – improve the state of NLP.  280 

 281 
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