

Implementing A Neural Cache LSTM

 Christina Wadsworth Raphael Palefsky-Smith 1
 Department of Computer Science Symbolic Systems Program 2
 Stanford University Stanford University 3
 Stanford, CA 94305 Stanford, CA 94305 4
 cwads@cs.stanford.edu rpalefsk@stanford.edu 5

Abstract 6

We re-implement the Grave et al. Neural Cache on our own LSTM 7
model, reproducing the perplexity results and performing additional 8
hyper parameter tuning. We additionally test the perplexity of different 9
authors’ text on other authors’ trained LSTMs with the Neural Cache 10
implementation. 11

 12

1 Introduction 13

Language models are a vital tool for Natural Language Processing, underlying many 14
higher-level applications like question answering and machine translation. The task is 15
simple: given a sequence of words, compute the conditional probability of the next word. 16
This can be well approximated by neural networks, especially LSTM models that can 17
capture long-term dependencies. In the quest to improve these models’ performance, one 18
approach is to increase the size of the LSTM hidden layer, or stack multiple layers to give 19
the model more “memory.” While effective, this comes at the cost of many more 20
parameters, and therefore the need for longer training times and more data. 21

One alternative is memory-augmented networks. These systems give the network access 22
to external, non-parameterized memory at test-time. These allow the network to 23
remember more context and improve performance without the burden of additional 24
parameters. An especially simple, and remarkably performant, memory-augmented 25
network architecture is Grave et al.’s Continuous Cache [1]. This module has several 26
advantages: it is straightforward and fast, runs entirely at test-time with no training 27
required, and can be attached atop any Recurrent Neural Network without modifying the 28
underlying architecture. Furthermore, it can predict Out-of-Vocabulary words after 29
encountering them just once in the test input and storing them in the cache. And most 30
importantly, it consistently reduces language models’ perplexity on standard benchmarks. 31

Our project consists of a reimplementation of Grave et al.’s work and a comparison on 32
the Wikitext2 perplexity benchmark. We perform extensive hyper parameter optimization, 33
conducting a grid search over the cache’s alpha and theta parameters to tune its 34
performance. Finally, we apply this optimized model to literary analysis, fine-tuning the 35
Wikitext2 LSTM model on works by Charles Dickens, Mark Twain, and H.G. Wells and 36
examining each model’s perplexity on the other authors’ work, aiming to identify hot 37
spots and determine if any semantic or structural characteristics are consistent between 38
authors. 39

 40

2 Background/Related work 41

The Neural Cache model draws from two main inspirations: memory-augmented 42
networks and cache models. Memory-augmented networks – the most prominent of which 43
is DeepMind’s Neural Turing Machine [2] – learn to read and write from an external 44
memory store. These read and write operations are fully differentiable, so the use of 45
memory is optimized like any other part of the network, via gradient descent. Memory-46
augmented networks are able to store much more information than un-augmented 47
networks, boosting their performance on context-sensitive tasks like language modeling. 48
However, according to Grave et al., these networks are computationally expensive, and 49
this overhead limits the models’ practical memory capacity. So, Grave et al seek a more 50
lightweight approach, one that can store information like a memory-augmented network 51
but without the computational cost. 52

In this vein, Grave et al. re-introduce the concept of a cache. First implemented by Kuhn 53
and De Mori [3] in 1990, language model caches store a window of previously 54
encountered words. Intuitively, if a word appears once, it is more likely to appear again. 55
For instance, a recipe containing flour is likely to repeat the word “flour” many times. 56
Cache models take advantage of this property and assign higher prediction probabilities 57
to words already stored in the cache. These modules are fast, require no training, and 58
unlike memory-augmented network architectures, can be grafted onto existing models 59
without modification. 60

Grave et al.’s Neural Cache can be considered a synthesis of these two ideas. Much like 61
Kuhn and De Mori’s work, the Neural Cache is a simple cache tacked onto the top of an 62
already-trained model. But unlike Kuhn and De Mori’s cache, which weights all cached 63
words equally, the Neural Cache weights each word by its hidden state similarity. When 64
each word is added to the cache at runtime, it is associated with the LSTM hidden state 65
that produced it. To predict the next word, the text is first run through the unmodified 66
neural network. Then, the hidden state of this network is input to the cache. This state is 67
dotted with each hidden state in the cache, and the associated words’ probabilities are 68
weighted by this product (and theta and alpha hyper parameters). The hidden state 69
weighting acts much like a memory-augmented network by linking memory access to the 70
internal state of the network. But there is none of the computational overhead, as the 71
memory read/write operations need not be learned. In a sense, the Neural Cache is the 72
best of both worlds: the power of memory augmentation with the speed of a cache. 73

 74
3 Approach 75

Our experiments are divided into two phases. In the first phase, we train an LSTM 76
language model on the Wikitext2 corpus, with additional fine-tuned models trained on 77
works by Charles Dickens, Mark Twain, and H.G. Wells. In the second phase, we apply 78
the cache at test-time, feeding the test set predictions of an already-trained model through 79
our cache implementation. 80

Our language model is a 1024-unit LSTM implemented with Keras. It consists of a fully-81
connected embedding layer transforming the vocabulary size to the 1024-length hidden 82
state size, a single LSTM layer, and a fully-connected output layer transforming the 83
LSTM’s hidden state back to a vocabulary-sized logits vector. Finally, the logits are 84
passed through a softmax function to compute a probability distribution for the next 85
word. 86

Our sequence length (the number of unrollings through time) is 30, and our batch size is 87
20. We apply a categorical cross-entropy loss at every step in time: at each step, the 88
network is trained to predict the next word in the sequence. We use the ADAM optimizer 89
with a learning rate of 1e-3 and a per-epoch weight decay of 2e-5 over 50 epochs. 90

At test-time, we run the network on the entire test set and record – for each word - the 91
softmax output, the LSTM’s hidden state, and the raw logits. The softmax output is used 92
to benchmark the baseline, un-cached model, and the logits and hidden state are fed into 93
our cache implementation. 94

Our cache implementation integrates the cache probability below into the probability 95
distribution of the vocabulary: 96

 97
If word w is in the cache, the similarity product between the current hidden state and the 98
hidden state stored in the cache with word w is calculated and multiplied by hyper 99
parameter theta. The idea here is that if a word has been seen previously as the “true” 100
output word of a hidden state and that hidden state is similar to our current hidden state, 101
the word w is more likely to be the next output word. Below, the cache probability is 102
factored into the probability distribution: 103

 104

 105
The above equation is referred to as global normalization, and represents a softmax over 106
the vocabulary and the words in the cache. In another formulation, the vocabulary and 107
cache probability are linearly interpolated with a lambda parameter as follows: 108

 109

 110
We focused on the global normalization probability distribution, computing the 111
probability for each word, then taking the softmax over the vocabulary. 112

 113
3 . 1 G l o b a l n o r m a l i z a t i o n , w i t h v e c t o r i z a t i o n 114

Calculating perplexity requires only the model’s probability estimate of the true class. 115
Given the large vocabularies involved – Wikitext2 contains over 33k words – it is 116
significantly faster to compute a probability for a single word rather than the entire 117
vocabulary. So, we exploit this property to achieve a computational speedup. We 118
vectorized the cached hidden states and the output weights to calculate the sum over the 119
vocabulary and the entire cache, which is the denominator of the softmax equation, with 120
only two matrix multiplications. We are able to use this exploitation because when we 121
sum the denominator by word, we search the cache to find all pairs containing that word 122
and use that pair’s corresponding hidden state. Because we are summing over all words, 123
we will search for each word once, and therefore we will retrieve each cache entry once. 124
Therefore, we can circumvent this individual search by simply taking all hidden states in 125
the cache and vectorizing them to be multiplied by the current hidden state. This 126
decreased runtime over our model that found each cache probability individually and 127
summed those individual probabilities. 128

 129
3 . 2 G l o b a l n o r m a l i z a t i o n , w i t h o u t v e c t o r i z a t i o n 130

Our vectorization approach is useful for faster perplexity calculations, but for 131
applications such as text generation, we need the probability estimates for every word in 132
the vocabulary. First, we initialize this vector to the neural network’s probability estimate 133
for each word. Then, we simply loop over each word in the cache, computing a cache 134
probability for that word and adding it to the corresponding row in the initialized vector. 135
While this method is slower, it lets us generate text and serves as a vital sanity check for 136
the computational shortcut described in Section 3.1. 137

 138

 139

4 Experiments 140

The experiments we performed emulated Grave et al.’s experiments. The most important 141
benchmark and performance to test was perplexity. We chose the Wikitext2 dataset to test 142
on. Of all the datasets Grave et. al. tested on, the Wikitext2 data set was the smallest, and 143
therefore the easiest for us to reproduce tests on. The different computational techniques 144
described in Section 3 produced identical results, but for the sake of computation time, 145
we ran the tests using the Section 3.1 “shortcut” technique with vectorized matrices. 146

4 . 1 P e r p l e x i t y 147

 148

Model

Testing

Neural cache model (size = 100) (Grave et. Al 2016) 81.6

Neural cache model (size = 2000) (Grave et. Al 2016) 68.9
Neural cache model (size = 100) (Our model) 82.2
Neural cache model (size = 500) (Our model) 69.9
Neural cache model (size = 2000) (Our model) 64.7

Table 1: Best perplexity results on Wikitext-2 149

 150

We saw similar numbers to the Grave et. al. paper. Our perplexities are within a few 151
points of theirs, and differences can be explained by the difference in the base models. 152
Our base LSTM models are separate implementations (different weight initialization, 153
learning rate, and non-adaptive softmax function) so the perplexities should not be 154
identical. However, our model follows the same trends, which can be seen more clearly 155
below. 156

 157
4 . 2 C a c h e s i z e s 158
 159

 160
Figure 1: Perplexity graphed with different cache sizes using the 161

Wikitext2 test set, alpha and theta set at 2 and .2, respectively. 162

 163
Figure 2: Perplexity graphed with different cache sizes using the 164
Wikitext2 test set, alpha and theta set at 1 and 3, respectively 165

 166

In the second graph, we selected hyper parameters alpha and theta that are most optimal 167
for the size 500 cache. We weight the cache too much at 5000, so we actually see a rise in 168
perplexity after a cache size of about 1500. A smaller theta is better for our larger cache 169
sizes, as we can see in the first graph. Our first graph shows hyper parameters tuned to a 170
larger cache of size 2000. We see a less steep decline in the beginning, but a decline still 171
to size 5000. 172

 173
Figure 3: The Grave et al. Neural Cache’s perplexity on 174

Wikitext103 graphed with different cache size 175

 176

As we see from the above graph of perplexity calculated on wikitext103 by the Grave et 177
al. Neural Cache, our implementation has the same trend as the Grave et al. cache. An 178
important disclaimer here is that the data sets are different, but Grave et al. did not 179
include a wikitext2 graph and the graph above is still useful as a comparison. We see the 180
divergence from the baseline follow a similar trend, and we even see the uptick at the end 181
when the cache size surpasses the optimal hyper parameters. Our graph with hyper 182
parameters alpha = 3, theta = 3 follows the same trends. 183

 184
4 . 3 H y p e r p a r a m e t e r t u n i n g 185

Hyper parameter alpha weights the Neural Cache. Hyper parameter theta weights the 186
similarity product within the cache. Below, we show two graphs: one with perplexities 187
calculated using a cache of size 500 and one with a cache of 2000. As we can see, our 188
optimal hyper parameters decrease when cache size increases. We additionally found that 189
our most optimal theta was in a range approximately one order of magnitude above the 190

optimal theta on the Grave et al. Neural Cache. Our underlying model was different, so 191
this difference makes sense. Unfortunately, it is somewhat hard to compare the graphs we 192
produced below upon first glance with the Grave et al. graph because our scaling is so 193
much more extreme than theirs is. In general, however, our hyper parameter graphs 194
follow the same trend that a larger theta between 2-4 (for Grave et al., .15-.3) and an 195
alpha ranging from 0-2 produce the best perplexity results for the model. 196

 197

 198
Figures 4 and 5: Our hyper parameter optimization results 199

 200
Figure 6: Grave et al.’s hyper parameter optimization results 201

 202

Another thing to note is that our alpha has a slightly bigger impact than the paper’s alpha. 203
We were unsure about why this was the case, but we supposed that since our base models 204
are not identical, different parts of the cache would weight differently since the hidden 205
state is dependent on the original model. Our base model was slightly worse, perplexity-206
wise, than Grave et al’s, so the cache as a component having a larger weight with a higher 207
optimal alpha value than they found makes sense. 208

 209
4 . 4 R e s u l t s 210

We are confident in our reproduction. The downward trend on our perplexity graphs is 211
extremely similar to the paper’s cache size-vs-perplexity trends. We also observed 212
differing optimal hyper parameters for different cache sizes, which suggests that cache 213
size materially affects performance and must be tuned as part of a larger system. Given 214
that this section of our work is a re-implementation of an existing paper, there is not 215
much to report other than the success of our implementation. The perplexity numbers 216
match up (within a reasonable margin owing to differing base models), and we are 217
satisfied that our Neural Cache implementation is sound. With the Neural Cache in our 218
toolkit, we turned to more lighthearted literary applications. 219

 220
5 Literary applications 221

Our primary application for the Neural Cache LSTM model was evaluating author 222
similarity. We trained separate models for several authors, and used these models’ 223
perplexity on the other authors’ work as a proxy for similarity. Intuitively, if a language 224

model of Author A has a low perplexity on Author B, then A and B must have relatively 225
similar styles and word choice. At a finer level, we evaluate perplexity on length-30 226
subsequences, and can thereby determine which sequences match, or do not match, a 227
particular author’s style. Note that this did not specifically require the Neural Cache – 228
any language model would have done the job – but we wanted to take advantage of the 229
Neural Cache model’s superior performance. 230

 231
4 . 1 Tr a i n i n g a u t h o r m o d e l s 232

We created corpora for H.G. Wells, Mark Twain, and Charles Dickens by concatenating 233
their novels from the University of Michigan’s cleaned subset of Project Gutenberg [4]. 234
The works were concatenated in lexicographic order by title, and then split into train 235
(80%), validation (10%), and test (10%) sets. We then fine-tuned our Wikitext2 model on 236
each author’s corpus. Any author words not in the Wikitext2 dataset were converted to 237
the <unk> token. After experimenting with text generation, we were disappointed to find 238
that the sentences produced were largely unintelligible, and not obviously discernable 239
between authors. However, given that our focus was on similarity metrics and not text 240
synthesis, we pressed onward. 241

. 242
4 . 2 P e r p l e x i t y h e a t m a p s 243

After fine-tuning each author LSTM, we ran each model on the other authors’ test sets, 244
generating a heat map of perplexity on 30-word sequences within the text. We expected to 245
find “hot spots” - certain paragraphs or sections that were particularly similar or 246
dissimilar between authors. 247

 248
In fact – and disappointingly for us - the majority of the heat maps have no discernable 249
pattern, regardless of author model or input corpus. There may be a few reasons for this. 250
First, the model trained on Wikitext2 could be dominant since our author data sets were 251
relatively much smaller. The authors we chose were also fairly similar. We stayed away 252
from Shakespeare since his style is such a drastic change from the above authors, but in 253
retrospect that would have perhaps been a more interesting comparison. Additionally, a 254
lot of tokens in the author texts were set to <unk>. However, we noticed a high-perplexity 255
spike at the end of Twain heat maps across all author models. After manually inspecting 256
the Twain input, we discovered that the final novel in the corpus had a different newline 257
structure than the other sections. To investigate the effects of new lines on our perplexity, 258
we re-ran our analysis after removing all newlines. Prior to new line removal, the Twain 259
model on the Twain corpus exhibited 55.2 perplexity. After removing newlines, 260
perplexity spiked to 81.9. Our model seems to have latched onto the easiest feature to 261
train on and weighted it more than other, more nuanced semantic and structural 262
differences unique to each author, causing the differences between the author-to-author 263
heat maps to be small. Care must be taken to ensure that input is uniformly formatted and 264
conclusions are not made before digging into data. 265

 266

6 Conclusion 267

As neural network language models continue to improve, it is likely that memory will 268
continue to play a larger and larger role. But as the Neural Cache has shown, these 269
memory extensions need not be complicated or computationally intensive. They can be 270
simple, fast, and adaptable to existing models. We successfully implemented the Neural 271
Cache and confirmed its impressive performance benefits. 272

Our literary experiments did not yield any especially novel (pun intended) results. 273
However, they served as an important reminder that LSTMs (even with the Neural Cache 274
implemented) tend to grab onto the “easiest” set of features, in this case, the <eos> 275
tokens. It’s important to go through data sets to see how text is formatted before drawing 276
extrapolations about structural or semantic significance 277

In summary, we successfully implemented a brand-new, high-performance extension to 278
an LSTM language model. We are excited to see the Neural Cache – and future memory-279
based developments – improve the state of NLP. 280

 281
6 . 1 C o n t r i b u t i o n s 282

Both team members contributed equally to this paper and project. Raphie wrote the initial 283
LSTM from scratch, and Christina added the first Neural Cache implementation. Raphie 284
then added another Cache implementation to help test and validate the first one. Both 285
spent a significant amount of time validating the cache and its accuracy. The rest of the 286
cache and literary graphs and tests were then run by both Christina and Raphie together, 287
and both worked on the poster and write up together. 288

A c k n o w l e d g m e n t s 289

We are incredibly grateful to Richard Socher, who pointed us toward this project and 290
helped us through its ups and downs. We further wish to acknowledge the authors of the 291
Neural Cache paper, Edouard Grave, Armand Joulin, and Nicolas Usunier, both for their 292
contribution to the field and the thoroughness of their documentation. Finally, a huge 293
thank-you to Microsoft Azure for their generous donation of GPU time. 294

R e f e re n c e s 295

[1] Grave, Edouard, Armand Joulin, and Nicolas Usunier. "Improving Neural Language 296
Models with a Continuous Cache." arXiv preprint arXiv:1612.04426(2016). 297

[2] Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv 298
preprint arXiv:1410.5401 (2014). 299

[3] Kuhn, Roland, and Renato De Mori. "A cache-based natural language model for 300
speech recognition." IEEE transactions on pattern analysis and machine intelligence 12.6 301
(1990): 570-583. 302

[4] Lahiri, Shibamouli. "Complexity of word collocation networks: a preliminary 303
structural analysis." arXiv preprint arXiv:1310.5111 (2013). 304

