
Codalab submission username: goyalk 1

Neural Network-based Question Answering System

Kushaagra Goyal
Department of Electrical Engineering

Stanford University
goyalk@stanford.edu

Sriraman Madhavan
Department of Statistics

Stanford University
sriraman@stanford.edu

Sanyam Mehra
Department of Electrical Engineering

Stanford University
sanyam@stanford.edu

Abstract

The idea of a Question Answering (QA) system is to extract information (some-
times passages, or spans of words) directly from documents, conversations, online
searches, etc., that will meet the user's information needs. In this work, we focus
on the Stanford Question Answering Dataset (SQuAD) and propose an end-to-
end deep neural network model for machine comprehension, while achieving an
F1 score of 61.13% and an Exact Match (EM) score of 46.92% on the test dataset.

Codalab submission username: goyalk
F1 score on test dataset: 61.13%
EM score on test dataset: 46.92%

1 Introduction

Building accurate Question-Answering systems is a compelling yet challenging task in natural lan-
guage processing research. A QA system can combine easily with other NLP systems, like chat-
bots. Some QA systems even go beyond the search of text documents and can extract information
from a collection of pictures. However, the limited size of previously available datasets prevented
researchers from building end-to-end deep neural network models. To address this weakness, Ra-
jpurkar et al. (2016) [1] developed the Stanford Question Answering dataset (SQuAD). SQuAD
comprises around 100K question-answer pairs, along with a context paragraph. The context para-
graphs were extracted from a set of articles from Wikipedia. Humans generated questions using that
paragraph as a context, and selected a span from the same paragraph as the target answer. In this
task, answering a question is defined as predicting an answer span within a given context paragraph.

2 Task Definition

The task can be represented as estimating the conditional probability Pr(A/Q,P) from the training
set and predicting answers for testing instances by:

A∗ = argmaxA∈A(P)(Pr(A/Q,P)) (1)

A(P) contains all possible substrings of P. We make an independent assumption where we try to
predict the starting and ending indices of the answer span instead. [2]

A∗ = argmax0<=as<=ae<PPr(ae/Q, P)Pr(as/Q, P) (2)

1

Codalab submission username: goyalk 2

3 Related Work

Wang et al. [2] propose a Multi-Perspective Context Matching (MPCM) model, which is an end-to-
end system that directly predicts the answer beginning and ending points in a passage, by forming
a matching vector from multiple perspectives. Xiong et al. [3] introduce the Dynamic Coattention
Network (DCN) for question answering, which fuses co-dependent representations of the question
and the document in order to focus on relevant parts of both. Seo et al. [4] introduce the Bi-
Directional Attention Flow (BIDAF) network, a multi-stage hierarchical process that represents the
context at different levels of granularity and uses bidirectional attention flow mechanism to obtain
a query-aware context representation without early summarization. In this project, we try to build a
hybrid model that combines certain functionalities from the above state-of-the-art systems.

Figure 1: Multi-Perspective Context Matching Model Architecture

4 Approach

4.1 Multi-perspective Context Matching models

Our initial model encodes the question and passage by using bi-directional LSTMs, while incorpo-
rating the relevancy of each word in the passage to the question, in the encoding process. For each
point in the passage, the model then matches the context of this point against the encoded question
from multiple perspectives and produces a matching vector. Given those matched vectors, the model
employs another bi-directional LSTM to aggregate all the information and predict the beginning and
ending points. We discuss each step in detail, in the following subsections.

4.1.1 Word representation

We represent each word in the question and passage with a 100-dimensional vector. The embed-
dings are pre-trained with GloVe (Pennington et al., 2014). The output of this layer is word vector
sequences for question Q : [q1, ..., qM], and passage P : [p1, ..., pN].

2

Codalab submission username: goyalk 3

4.1.2 Relevancy Computation

We compute a relevancy matrix which quantifies the relevancy between every word in the passage
and every word in the question. The relevancy is computed by simply taking the cosine similarity
of the embeddings of the words involved: ri,j =

qi
T pj

‖qi‖‖pj‖ . Then, the relevancy degree of each
passage word is the maximum relevancy among all computed quantities involving the word: rj =
max{ri,j}. The relevancy degrees are then multiplied with the word embeddings before moving
on to the next layer p′j = rj · pj to ensure that relevant words are given a higher weight in the
subsequent layers, than irrelevant and common words like stop words, etc. The output of this layer
is word vector sequences for question Q : [q1, ..., qM], and weighted passage P’ : [p1′, ..., pN ′].

4.1.3 Context Representation

In this layer, we incorporate contextual information into the way the question and passage are repre-
sented. We use a bidirectional LSTM to encode contextual embeddings for each question word and
passage word.

~hi
q = ~LSTM(~hi−1

q, qi) i = 1, ...,M
~hi
q = ~LSTM(~hi−1

q, qi) i = 1, ...,M
~hj

p = ~LSTM(~hj−1
p, pj) j = 1, ..., N

~hj
p = ~LSTM(~hj−1

p, pj) j = 1, ..., N

4.1.4 Context Matching

In this layer, we compare the constructed contextual embeddings of the passage to the query from
multiple perspectives. We implemented three matching strategies to compare each contextual em-
bedding of the passage to the question, namely Full matching, Max-pooling matching, and Mean-
pooling matching, as described in Wang et al. [2].

4.1.5 Aggregation Layer

This layer involves another bidirectional LSTM on the matching vectors that were generated in the
previous step. This BiLSTM facilitates interactions at each time step of the passage. The aggregation
vectors that are generated, are used to predict the answer span, in the next layer.

4.1.6 Prediction Layer

We have implemented a feedforward neural network to predict the probability distributions for the
span-start and span-end positions. We feed the aggregation vector of each time step into the fully
connected layer individually, calculate a value for each time step, then normalize the values across
the entire passage with softmax operation.

4.1.7 Results

The model’s performance was tested on the validation set, and it did not perform as expected, and
had a very low performance. The results obtained from this model are shown in table 1.

Table 1: Model Performance on val set
Model F1 (%) EM(%)
Full Matching only 28.2 20.4
All Matchings 32.1 23.3

We concluded that the joint representation of the passage from this model was not being learned
effectively, which is why we decided that implementing a co-attention mechanism will probably
improve the model performance.

3

Codalab submission username: goyalk 4

Figure 2: Co-attention Encoder Architecture

4.2 Co-attention Models

4.2.1 Naive Model

We implemented a simple co-attention mechanism (similar to relevancy computation) after the Con-
text Representation Layer, that attends to the question and document simultaneously and finally
fuses both attention contexts. The resulting representation is fed to a simple Bi-LSTM and softmax
layer to compute the probability distributions of span start and span end.

4.2.2 Co-Attention Mechanism

We then proceeded to improve the encoding mechanism in the naive model. Figure 2 describes the
steps involved in incorporating the co-attention mechanism into the passage representation. We first
compute the affinity matrix which contains the affinity scores of all pairs of passage and question
words: A = PTQ. The affinity matrix is then normalized row-wise to produce the attention weights
across the document for each word in the question, and column-wise to produce the attention weights
across the question for each word in the document.

AP = softmax(A); AQ = softmax(AT) (3)

The resulting weights are then combined with the initial representations to give a final encoder
output with co-attention, as described in Xiong et al. [3].

(PassageAttentionContext) CP = P ·AQ (4)

Final Encoder Output = [P ; ([Q;CP] ·AP)] (5)

4.2.3 Context Modeling

We then proceeded to improve the decoder of the intermediate model by adding a layer that employs
a Recurrent Neural Network to scan the context. The co-attention encoder output is fed into a
double-layered Bi-LSTM, as described in Seo et al. [4]. We observe that this allows to decode
the joint representation of the question and the context, subsequently to compute the probability
distributions of span start and span end. The steps in the decoder architecture are shown in Figure
3.

4.3 Experiment Details

We use 100 dimensional GloVe vectors and limit the vocabulary to the words in the training set. We
set the maximum passage length to 300, this helps in speeding up the training. Out of 87k examples,

4

Codalab submission username: goyalk 5

Figure 3: Decoder architecture

Table 2: Coattention Models’ Performance on Dev set
Model F1 (%) EM (%)

Naive Model 33.6 24.2
+ Co-Attention Mechanism 45.2 34.5
+ Context Modeling Layer 60.4 45.5

∼ 1500 samples had a passage length of greater than 300. These small fraction of samples were
removed from training. We limited the question length to 25, again so that the small fraction of such
questions are automatically truncated. We trained our model with various dropout values ranging
from 0.05 to 0.5 and also with different hidden state sizes 50, 100, 150. We observed the best
performance with the state size of 150 and a dropout of 0.1. We ran our model for 4 epochs and each
epoch takes ∼ 5 hours of training time on the GPU. The model was optimised using the ADAM
optimiser with a learning rate of 0.001.

Figure 4: Performance Variation with Answer Length

5

Codalab submission username: goyalk 6

Figure 5: Performance Variation with Question Type

5 Results

Evaluation of the model is done with two metrics, namely F1 and EM score. The EM (Exact Match)
calculates the exact string match between the predicted and the ground truth answer whereas F1
calculates the overlap between the words in predicted and the actual answer. The results of our
variations of the co-attention models are shown in Table 2, and the performance of the final model
is shown in Table 3.

Table 3: Final Model Performance on SQuAD
Data set F1 (%) EM (%)

Training set 74.5 59.2
Dev data set 60.4 45.5
Test data set 61.1 46.9

We analysed the variation in performance of our model with the answer length. 5 We observed that
with increasing question length, the performance decreases. But this is very intuitive, since longer
answer spans will be much more challenging to compute.

We analysed the variation of the performance with the different question types in 4. We observe that
’when’ type questions have the maximum performance whereas, the ’why’ type questions have a
lower performance. Our models struggles with the ’why’ questions, because these are complex and
require a deeper level of reasoning to answer. Also, the answer to ’why’ questions typically tend to
be longer, and as seen in Figure 4, the performance of the model is lower.

6 Conclusion

We implemented an end-to-end-neural network architecture for question answering.

Our model identifies the answer span by matching each time-step of the passage with the question
using a co-attention encoder which learns the co-dependent representations of the question and the
document. The bi-directional attention mechanism feeds query-aware context representation to pre-
dict the beginning and ending points based on globally normalizing probability distributions. Future
work involves exploring linear, bilinear and linear with perceptron attention. Specific model en-
hancements to improve performance on ’why’, ’what’, ’which’ type of questions can also lead to a
better QA system.

References

[1] Rajpurkar, Pranav, et al. ”Squad: 100,000+ questions for machine comprehension of text.” arXiv
preprint arXiv:1606.05250 (2016).

6

Codalab submission username: goyalk 7

[2] Wang, Zhiguo, et al. ”Multi-Perspective Context Matching for Machine Comprehension.” arXiv
preprint arXiv:1612.04211 (2016).

[3] Xiong, Caiming, Victor Zhong, and Richard Socher. ”Dynamic Coattention Networks For Ques-
tion Answering.” arXiv preprint arXiv:1611.01604 (2016).

[4] Seo, Minjoon, et al. ”Bidirectional Attention Flow for Machine Comprehension.” arXiv preprint
arXiv:1611.01603 (2016).

[5] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. ”Glove: Global Vectors for
Word Representation.” EMNLP. Vol. 14. 2014.

[6] Wang, Shuohang, and Jing Jiang. ”Machine comprehension using match-lstm and answer
pointer.” arXiv preprint arXiv:1608.07905 (2016).

[7] Ittycheriah, Abraham, et al. ”IBM’s Statistical Question Answering System.” TREC. 2000.
[8] Zhang, Junbei, et al. ”Exploring Question Understanding and Adaptation in Neural-Network-

Based Question Answering.” arXiv preprint arXiv:1703.04617 (2017).

7

	Introduction
	Task Definition
	Related Work
	Approach
	Multi-perspective Context Matching models
	Word representation
	Relevancy Computation
	Context Representation
	Context Matching
	Aggregation Layer
	Prediction Layer
	Results

	Co-attention Models
	Naive Model
	Co-Attention Mechanism
	Context Modeling

	Experiment Details

	Results
	Conclusion

