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Abstract

Identifying nominals with no head match is a long-standing challenge in corefer-
ence resolution with current systems performing significantly worse than humans.
In this paper we present a new neural network architecture which outperforms the
current state-of-the-art system on the English portion of the CoNLL 2012 Shared
Task. This is done by using a logistic regression on features produced by two sub-
models, one of which is has the architecture proposed in [CM16a] while the other
combines domain specific embeddings of the antecedent and the mention. We also
propose some simple additional features which seem to improve performance for
all models substantially, increasing F1 by almost 4% on basic logistic regression
and other complex models.

1 Introduction

Coreference resolution is a domain of Natural Language Processing which is focuses on finding all
of the references to the same real world entity within a body of text. Applications of coreference res-
olution include full text understanding (for discourse understanding), machine translation (gender,
numbers), text summarization, and question-answering systems.

This paper will focus on a specific aspect of coreference resolution - that of nominals with no head
match. A head match is a matching word, such as “President” that often acts as a strong hint for
coreference. This no head match subset of the problem is assumed to be the most difficult because
of the lack of direct signals to indicate a match. Nominal matches are ones involving descriptions.
Other head match types include proper for names and pronominal for pronouns. An example of a
nominal coreference with no head match is matching the antecedent “the country’s leftist rebels” to
the anaphor of “the guerrillas” which was a notable win in [CM16a].

Traditional approaches to coreference began with Hobb’s naive algorithm [Hob86]. This approach
embodies the semantic or structural methodology behind anaphora resolution through a rules-based
system. This algorithm is one of the early baselines for coreference.

There are three major modeling approaches to coreference:

• Mention pair models, which is the type this paper will attempt to implement, make inde-
pendent pair-wise decisions. Typically these models also implement a reconciliation mech-
anism as a final stage before evaluation. These mechanisms map links that are implied by
the model predictions. (see example: [Hos16])

• Mention ranking models are attempting to solve a ranking problem by listing all possible
antecedents and optimizing a ranking system to find the best or most likely antecedent
mention. (for example: [HS11])

• Entity mention models attempt to link all mentions of one entity in a cluster model. This
approach added a lot of power in [CM16b] by selectively choosing which a clustering
algorithm that reduces errors on large scale mention clusters.
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Current state of the art models have a CoNLL F1 [PMX+12] score of almost 69% [CM16a] in
aggregate while only 18.9% for corefences with no head match. Humans on the other hand score
over 60% on similar tasks. Thus, these nominals with no head match constitute an important part
of human understanding and is an especially difficult task for computers. Nominals with no head
match need to make much more use of context and, in particular, word vector embeddings for related
semantic meaning to identify these types of coreferences. With this in mind, the approaches found in
this paper will emphasize aspects of word vector alignment. Our framework for this model is going
to be that of a mention-pair model as the proposed models in this paper treat all mentions-pairs as
independent, without any post reconciliation implemented as yet.

In our model, we increase the test F1 on a 2% negative sample downsample from 0.49 for logistic
regression baseline and 0.54 for state-of-the-art architecture in [CM16a] to 0.61 using a combina-
tion of new features and intelligent architecture. Note that these are not CoNLL F1 scores, since
we’re only working on independent intra-document pairwise predictions rather than the downstream
clustering task.

2 Data & Evaluation

We use the data provided by the CoNLL 2012 Shared Task on English [PMX+12].

2.1 CoNLL 2012 Shared Task

The CoNLL 2012 shared task dataset provides 2802 documents in training, 343 documents in dev
and 348 documents in test. The mentions, and the co-reference pairs and types are tagged in this
dataset. We filter on nominal mentions and co-reference pairs which have no head-match. We struc-
ture our dataset as an evaluation of direct pair matches, and try to build deep learning models directly
around this subset. For modeling simplicity in this paper, we treat all mentions as independent and
try to learn simply based on input features.

The class label counts in the dataset are heavily skewed. If there are N mentions in a documents,
there will be N2 total mention pairs and only a few of them will be co-references. This means
that the dataset is heavily skewed with significantly more negative examples than positive examples.
In our training data we have 7,643,471 negative samples while 8,010 positive samples. In most
of our experiments, we’ve downsampled the negative samples to 2% while maintaining 100% of
our positive samples. Even with this downsampling, only 5% of our modified samples are positive
mentions. See figure 1 for schematic representation of data-generating process.

Figure 1: Schematic diagram of the data

2.2 Evaluation Metrics and Nuances

F1 is a standard metric in binary and co-reference classification tasks. For co-reference classifica-
tion, CoNLL F1, which is an average of MUC [VBA+95], B3

1 [BB98] and CEAF [Luo05] F1 scores
is common. While we’ve used F1 as an evaluation metric, we recognize some of its shortcomings.
Since F1 scores are based on hard {0, 1} classification, while the model predicts a probability esti-
mate, they are very sensitive to thresholds. This is evidenced by figure 2 where for the same proba-
bility outputs, we can have drastically varying F1’s depending on the threshold. We realize that by
choosing F1 as evaluation metric, the threshold becomes another highly sensitive hyper-parameter
of the model.

We also report on AUC (ROC) since it’s more intuitive and independent of thresholds. An AUC of
0.5 represents no information or random predicitions which 1.0 is perfect information.
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Figure 2: F1 is very sensitive to the threshold chosen

3 System Architecture

We have implemented four model architectures and the baseline is the logistic regression with two
sets of features. The base copy of features are similar to [CM16a] namely:

• Simplified version of sentence distance, including indicators for distances < 5 as well as
actual distance (rather than the 10 buckets found in the paper).

• Embeddings (from word2vec, 50 dimensions) of the first word, head words, last word,
previous word, and next word.

• Speaker features, as described in the paper.

• Pair features, including whether or not there is an exact match, a relaxed head match or if
there is the same speaker tagged.

3.1 Model 1

The starting point of our paper is the architecture proposed in [CM16a] (See figure 3). The basic
model is 3 fully connected layers with ReLU activations. The various hidden layer sizes are (500,
200, 100) and the final transformation is a sigmoid function. We use weighted cross entropy as our
loss function for training. We also experimented with L2 loss, but found that weighted cross entropy
better expressed the cost of missing rare events - a fundamental challenge in our problem.

Figure 3: Model 1 architecture with three layer feed-forward neural network
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3.2 Model 2

A secondary structure focuses on taking the insight that we are essentially modeling some embed-
ding interactions and creating 2 separate learning models, one for each mention. The input features
are trimmed to remove features related to the other word (other than mention distance). The final
hidden layer of each of these mention-level models are then combined in a final layer dot-product.
We then run this final layer through the sigmoid function to come up with a final prediction. The 2
final layers that are inputs to the dot-product could be thought of as domain specific embeddings of
each mention. The interaction of these embeddings are then translated to our probability of corefer-
ence. Refer to figure 4 for details.

Figure 4: Model 2 architecture learns the candidate antecedent and mention embeddings indepen-
dently before combining them

3.3 Composite Models (Model 3 & Model 4)

Model 3 is an ensemble of model 2 and model 3, where we simply add the 2 final scores from
model 1 and model 2 and then apply a sigmoid function to that output. This model is also trained
end-to-end rather than using pre-trained versions of model 1 and 2, otherwise they would end up
over-predicting the outcome.

Model 4 is a modification onto model 3 where instead of simply adding the two models, we take the
sigmoid function of each of model 1 and model 2. We then create a new submodel with the same set
of input features to train a probabilistic model that puts a weight of prb on model 1 and a weight of
1-prb on model 2. This probabilistic model is a logistic regression on input features that determines
what weight should be given to model 1. This is also trained end-to-end. The idea is to see if there
are times, based on input features, that model 1 may be preferable to model 2 and vice versa rather
than do a simple ensemble average.

We explore regularization with dropout, especially at the first hidden layer. We found that applying
dropout at higher levels was detrimental to performance (see figure 5b). Our belief is that this ended
up confusing the model rather than making it robust.

4 Experiments, Results & Challenges

4.1 Results

In our experiments we compare the baseline model of logistic regression with the four proposed
models. The proposed models were tuned using the train and dev set on varying loss function,
weights to the loss function, learning rate, neural network architecture, dropout and number of
epochs. The best model performance on the dev set for each of the model was chosen and the results
produced on the test set which are summarized in table 1. It must be noted that the test set, like the
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(a) Average precision and recall for our models as
we increase the training epochs.

(b) The train and dev F1 scores with varying levels of
dropout.

training and dev set has been downsampled to 2% negative samples and uses the additional features
as described in section 4.2. Model 4, training on 15 epochs with 0.0001 learning rate (super-slow)
performs almost 12% better than the baseline logistic regression while almost 8% better than the
tuned state-of-the-art model.

Unsurpisingly, as can be seen in figure 5a, given the label imbalance, as we increase the number
of epochs, we are able to increase the precision at the expense of recall for all models. The con-
fusion matrix for the best performing model gives a good understanding of the labels and relative
performance (Table: 2).

Model Name Training F1 Dev F1 Test F1
Logistic Regression .76 .36 .49
Model 1 .76 .53 .53
Model 2 .65 .51 .53
Model 3 .75 .52 .56
Model 4 .82 .52 .61

Table 1: F1 score on 2% downsampled negative examples data

Predicted NO Predicted YES
Actual NO 20272 424
Actual YES 559 531

Table 2: Confusion matrix for Model 4 over test dataset.

4.2 Impact of Additional Features

Looking at some of the errors like table 3, especially false negatives for co-reference like “the molar-
a tooth” and “my taxi-the car”, we added the cosine distance of the word vector embeddings as raw
features to the model. In particular, we added the dot-product between the first, last and the head
word of the 2 mentions, creating 4 extra features for every mention pair based on the semantic
relationship between the two mentions. This drastically improved the model performance, as can
be seen in table 4. Simply adding these features to the logistic regression increased the model
performance by 4%. The intuition behind adding these features is simple - given concatenated word
vectors [m1m2], a fully connected neural network can never learn m′

1m2 which represents how
similar m1 is to m2. Unsurpisingly, a lot of nominals with no head match are synonyms or specific
example of a general entity which is now captured by these new features (this is also attempted by
model 2).
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m1-m2 pairs P(Without Addn. Features) P(With Addn. Features) ∆

the public purse — the public ’s money .0242 .961 +.93
a molar the tooth .0043 .740 +.74
the plunge - the downturn .401 .742 +.341

Table 3: Example Wins: Examples of False Negatives without Addn Features turning to True Posi-
tive with Additional Features

Model Name Training F1 Test F1 Test AUC (ROC)
Without Addn. Features .71 .45 .90
With Addn. Features .76 .49 .91
∆ +.05 +.04 +.01

Table 4: The F1 score improves drastically for logistic regression (actually, for all models) with the
addition of the new features.

4.3 Challenges

Class imbalance: As mentioned previously, the overall true rate of the examples in our dataset is
around 0.1%, meaning that models trained on the raw dataset have difficulty learning what distin-
guishes positive examples from negative examples. We take a multi-step approach to resolving this
issue and guiding the model to learn to distinguish positive and negative examples.

We begin by downsampling our training data - keeping all positive examples and only 2% of the
negative examples. We also choose weighted cross entropy as our loss function, so that we can give
further weight to positive examples through a hyperparameter that we can tune. When evaluating
F1 metrics, we are then forced to define a threshold at which we consider the model probability to
be true through two mechanisms.

• When dealing with downsampled data, we use an F1 tuner that searches over the training
set for the threshold that yields the highest F1, and apply this to our dev set evaluation.

• When training on downsampled data but evaluating on the full dataset (for our test set) we
run our calibration process. This takes the distribution of predictions from the training set
and finds the percentile of data such that the model will emit the correct true rate as though
the data was not downsampled. For example, if the rate in our downsampled data is 33%
and the downsampling was 50%, that means the true rate is around 17%. In this example,
calibration of the prediction percentile would be with the goal of yielding true 17% of the
time on the training set. The idea behind setting a higher threshold is that if we need to
reduce the number of true predictions, we should only keep the highest conviction guesses
from the model. In practice, the level of model certainty required to emit a True varied
between 97.5% to 99.8% depending on the model.

Memory and storage: Because of the size of our dataset, we had challenges creating a full dataset
on disk as well as fitting one in memory for training. Mitigating factors included only using half-
precision for float and working with downsampled training data with a calibration layer. We also
partitioned training data and running over all of the partitions each epoch. This greatly increased
the time per epoch and experiment. A possibility to reduce the size of the data is to do in-memory
lookups of word vectors, but this would have great slowed down the training speed as each example
would require a read-and-process operation rather than a simple read. We could also use a databse
to store the test/train and dev features.

Evaluation and prediction reconciliation: A true, full evaluation would involve creating a full set
of CoNLL evaluation metrics on the entire dataset. Instead, we used F1 on a simple pair-matching
model without any reconciliation step. Due to time constraints, we were unable to fully implement
the level of evaluation and post-processing that would be directly comparable to other CoNLL papers
and submissions.
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5 Conclusion and Future Work

• Downstream tasks: Coreference links between mentions form an upstream part of a coref-
erence system, and nominals with no head match are a fraction of the coreferences. In this
paper, while we improve upon the existing state-of-the-art algorithm, we don’t know the
impact on the downstream tasks.

• Document level memory: We are looking at intra-document coreferences in this paper.
Memory and attention play a role in human understanding of semantic information, which
could be extended to this class of problems using LSTM or RNNs. It can also help weight
multiword mentions to better capture the key part of what makes the object a real world
reference.

• A separate layer for singleton mentions: Identifying which mentions are never repeated
could help the model by reducing the number of evaluated candidates for future evaluation.
This could be done end-to-end or within a continues framework with a penalty or probabil-
ity interaction. This is motivated by Recasens et al. and could incorporate more semantic
features.

Acknowledgments: We want to thank Kevin Clark for supervising this work.
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