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Abstract 
Humor generation is a very hard problem in the area of computational 
humor. In this paper, we present a joke generation model based on neural 
networks. The model can generate a short joke relevant to the topic that the 
user specifies. Inspired by the architecture of neural machine translation and 
neural image captioning, we use an encoder for representing user-provided 
topic information and an RNN decoder for joke generation. We trained the 
model by short jokes of Conan O’Brien with the help of POS Tagger. We 
evaluate the performance of our model by human ratings from five English 
speakers. In terms of the average score, our model outperforms a 
probabilistic model that puts words into slots in a fixed-structure sentence. 

 

 

1  Introduction 

Humor research has been an important part of literature, linguistic and cognitive science for 
a few decades, and theorists have believed that incongruity contributes to sensations of 
humor. Many researchers have been studying the logic, mathematical foundations and 
computational models of humor [1]. Concretely, probabilistic model of sentence 
comprehension can help explain essential features of the complex phenomenon of linguistic 
humor [2], and the paper concludes that both ambiguity and distinctiveness are significant 
predictors of humor. 

Computational humor is a relatively new field of study and branch of artificial intelligence 
which uses computers to model humor. Joke generation is a very hard problem in this field. 
Researchers have proposed mathematical models to generate fixed-structure joke [3] with the 
help of big data. However, the model selects words and fill them into several fixed slots 
within simple sentence structure rather than generating a complete joke. 

Recurrent Neural Networks (RNNs), and specifically, a variant with Long Short Term 
Memory (LSTM), are having successful applications in a wide range of machine learning 
problems that involve sequential data prediction, from text generation [4] to neural machine 
translation [5] demonstrated the power of RNNs trained with the new Hessian-Free optimizer 
(HF) by applying them to character-level language modeling tasks. After training using a 
large corpus, the language model can generate readable texts. Following the work of [4], it is 
shown in experiments that Gated Recurrent Units (GRUs) and LSTMs both significantly 
outperform RNN [6]. 

Motivated by these recent developments, in this paper we use a corpus of thousands of short 
jokes written by Conan O’Brien, and we want our model to be able to generate a relevant and 
comprehensible joke given a few topic words. To extract the topic words from the training 
data, we use the part-of-speech (POS) tagger [7] to collect the proper nouns in the jokes. We 
use Global Vectors (GloVe) [8] to represent input and topic words, and LSTM RNN with 
attention-mechanism as our neural network decoder architecture. As there is no reliable 



automatic evaluation on joke generation task, we depend on human evaluation and compare 
the results with the probabilistic model proposed by [3]. 

 
2  Related Work 

2.1  RNN Encoder-Decoder 

Joke generation is similar to text generation but a lot harder because there must be certain 
incongruity in the generated content that makes people laugh. Character-level RNNs can 
generate readable words [4], but the content is not guaranteed to be meaningful. Neural 
machine translation [5] generates meaningful content with the encoder–decoders architecture 
[9], [10]. Models proposed recently for neural machine translation usually encode a source 
sentence into a fixed-length vector from which a decoder generates a translation.  LSTMs 
have been used as the decoder to generate image caption [11]. The neural image captioning 
model is also an encoder-decoder structure, but different from neural machine translation in 
that the encoder is a convolutional neural network (CNN). The model uses the last hidden 
layer of CNN as an input to the RNN decoder that generates sentences. Similarly, GRU has 
been used as decoder to generate factoid questions [12]: 

𝑔!! = 𝜎(𝑊!𝐸!"#𝑤!!! + 𝐶!𝑐 𝐹, ℎ!!! + 𝑈!ℎ!!!) 

𝑔!! = 𝜎(𝑊!𝐸!"#𝑤!!! + 𝐶!𝑐 𝐹, ℎ!!! + 𝑈!ℎ!!!) 

ℎ = tanh  (𝑊𝐸!"#𝑤!!! + 𝐶𝑐 𝐹, ℎ!!! + 𝑈(𝑔!! ∘ ℎ!!!)) 

ℎ! = 𝑔!! ∘ ℎ!!! + (1 − 𝑔!!) ∘ ℎ 

The work directly uses fact embedding as the encoder’s output rather than traditional 
sequential encoding. 

 

2.2  Attention Mechanism 

The attention mechanism was first introduced to sequence-to-sequence [5] to release the 
burden of summarizing the entire source into a fixed-length vector as context. 

The architecture of question generation [12] includes an attention mechanism on the encoder 
representation to generate the associated question Q to that fact F. Other researchers use 
copying mechanism [13] to ensure that the generated output includes many words from the 
input. The copying mechanism increases the probability that certain words appear exactly in 
the output by using separate parameters to compute probabilities for different sections of 
vocabulary. 

 

3  Approach 

3.1  Dataset 

Our training data consists of data from two different sources. The first source is the 7699 
jokes written by Conan O’Brien (downloaded from github.com/brendansudol), all of 
which are short jokes (many are one-sentence jokes) on different topics such as current 
affairs, politics and sports. These jokes contain 258443 words in total and a vocabulary size 
of 13773. Another source is the online news data from the Mashable website. Since the joke 
data are mainly about current affairs, it would be helpful to incorporate news data to improve 
the training of language model. Our training data is the mixture of both jokes and news data. 
Although the news is not funny, the weighted-pick strategy above the RNN output layer 
brings randomness to the generated text, and thus has a certain probability to produce 
incongruity in the text, potentially making it funny. 

 

 



3.2  Encoder 

We first used Part-of-Speech Tagger (POS Tagger) to extract proper nouns from each 
training samples. Since our goal is to generate jokes based on topic keywords given by user, 
we assume that proper nouns (e.g., individual entities like name of person, location, 
organization, etc.) are keywords that can represent the topic of the joke. For example, the 
sentence “In Australia, a couple is getting married inside an IKEA store, which means their 
marriage will likely fall apart in two years.” the POS Tagger collects “Australia” and 
“IKEA”. 

Word vector are vector space representations of words that can be used for capturing 
fine-grained semantic and syntactic regularities. Typical algorithms are Word2Vec and 
Global Vectors for word representation (GloVe). We use the pre-trained GloVe vectors from 
Stanford NLP group as embedding because it’s been proved to combine advantages from 
both count-based methods like LSA, Hellinger-PCA, and direct prediction methods like 
Skip-gram and CBOW, and has very good performance on word similarity / analogy tasks. 

We encodes the extracted proper nouns, and then average the bag of words as 𝐸𝑛𝑐 𝑗𝑜𝑘𝑒 =
!
!
(𝑒!! + 𝑒!! +⋯+ 𝑒!!). The embedding matrix could be another variable to learn, however, 

since our training corpus is not large enough, it is better to use the fixed GloVe embeddings. 
We tried GloVe embedding of length 50, 100 and 300, and 300 gives the best result, as it 
stores the most amount of information. To use GloVe as the initial hidden state of the 
decoder, the decoder hidden states should be of the same dimension. To enable larger-size 
RNN, we implemented another layer 𝐻 = 𝜎 𝑊𝑥 + 𝑏 ,𝐻 ∈ 𝑅!! , 𝑥 ∈ 𝑅!!"#  at the front of 
encoder for dimension transformation, and now the RNN hidden size is independent from the 
size of word embeddings. 

Since using the average of proper nouns may cause a loss of information, we also try using 
concatenation as 𝐸𝑛𝑐 𝑗𝑜𝑘𝑒 = [𝑒!! , 𝑒!! ,… , 𝑒!!]. However, that leads to variable length of 
output, and concatenation means modifying the order of proper nouns might represent 
different meanings in this case, which is not reasonable. Therefore we move forward with 
average. 

The output vector from the encoder serves as the initial hidden state of the decoder. We also 
use the topic word embedding (proper nouns) for attention-mechanism [14], which is 
introduced in detail in section 3.2. The need for attention is motivated by the intuition that 
the model would attend to different kinds of topic word at different time steps in the 
joke-generation process. Vectors of individual proper nouns are put in a pool for the 
attention module to select from, and the RNN pays different attention to different proper 
nouns in each time step. 

 

3.3  Decoder LSTM 

 
Figure 1: The computational graph of the joke-generation model 



For the decoder in Figure 1, we use LSTM/GRU recurrent neural network with an 
attention-mechanism on the encoder representation to generate the joke containing the topic 
words (modified from github.com/hunkim/word-rnn-tensorflow). The hidden 
state of the decoder RNN is computed at each time step as: 

𝑖! = 𝜎(𝑊 ! 𝑥! + 𝑈(!)ℎ!!!) 

𝑓! = 𝜎(𝑊 ! 𝑥! + 𝑈(!)ℎ!!!) 

𝑜! = 𝜎(𝑊 ! 𝑥! + 𝑈(!)ℎ!!!) 

𝑐! = tanh  (𝑊 ! 𝑥! + 𝑈(!)ℎ!!!) 

𝑐! = 𝑓! ∘ 𝑐!!! + 𝑖! ∘ 𝑐! 

ℎ! = 𝑜! ∘ tanh  (𝑐!) 

Unlike [4], we build word-level language model instead of character-level language model. 
Concretely, we encode topic words and input words into vectors using GloVe embedding, 
and feed the output word back into the RNN one at a time with the step function. We will 
then observe a sequence of output vectors, which we interpret as the confidence the RNN 
currently assigns to each word coming next in the sequence. Compared with character-level 
RNN, the word-level RNN achieves better sentence coherence in the generated text. 

Lastly, the function is computed using an attention-mechanism [14]: 

𝑢!! = 𝑣!tanh  (𝑊!
!ℎ! +𝑊!

!𝑑!) 

𝑎!! = softmax(𝑢!!) 

𝑑!
! = 𝑎!!ℎ!

!!

!!!

 

in which, 𝑊!
! and 𝑊!

! are learnable parameters. The vector 𝑢! has length 𝑇! and its i-th 
item contains a score of how much attention should be put on the i-th hidden encoder state 
ℎ!. These scores are normalized by softmax to create the attention mask 𝑎! over encoder 
hidden states. Lastly, we concatenate 𝑑!

! with hidden state ℎ!, which becomes the new 
hidden state from which we make predictions, and which is fed to the next time step in our 
recurrent model. 

 

3.4  Generating Jokes 

3.4.1  Options 

Before starting the generation, there are a few options for the user to specify or leave as 
default. First of all, the user can specify the topic about the joke. The topic is described by a 
list of proper nouns, such as “Donald Trump”, “Obama China” etc. The proper nouns are 
then represented by GloVe embedding, transformed to use as the initial hidden state and the 
attention of the decoder RNN. If the topic is left as default, the decoder RNN would have 
all-zero vector as initial hidden state and no attention. In this case, the topic is going 
completely freestyle. Moreover, the user can also specify the prime words--what words the 
joke starts with--by providing a list of words like “I don’t know why but”, “Donald says 
yesterday that” etc. These words are going to be the input words one word at a time, from the 
first time step. If the prime words are not specified, a random word from the vocabulary will 
be chosen as the starting word. 

 

3.4.2  Search Strategy 

Based on the model trained on our joke corpus, the RNN can generate new text one word at a 
time. At each time step, the RNN outputs the probabilities that each word in the vocabulary 
appear next. We don’t want to consistently choose the word with the highest probability, 
because this will cause the model to make more likely, yet also more boring and conservative 



predictions. Weighted-pick search strategies can cause the model to take more chances and 
increase diversity of results at a cost of more mistakes. The model picks random word from 
the vocabulary according to the weights, which are the probabilities coming from the last 
softmax layer. 

 

3.4.3  Generation 

The user might want to specify the exact number of words for the RNN to output. If this 
number is omitted, the joke generation can automatically stop when an end-of-sentence token 
is produced. The end-of-sentence tokens are manually added in the training data, at the end 
of each separate joke. 

Upon generation, the user-defined prime words are encoded into embeddings, and fed into 
RNN one word at a time. The output vector indicates the confidence the RNN currently 
assigns to each word coming next, and such confidence is then used as weights in the 
weighted-pick search strategy. The picked word becomes the next word in the generated text, 
and it is iteratively fed into RNN as the next input word if the user-given prime words run 
out. 

 

4  Experiment 

4.1  Training 

We tried to improve performance in following steps. Firstly, we trained the decoder-only 
model (a vanilla RNN) and tuned the hyperparameter (hidden state length, number of layers, 
etc) for the best performance in text generation in terms of syntax. Then we included the 
encoder to initialize the hidden state of the decoder, and found significant relations between 
the input topic words and the output. After implementing the attention-mechanism, we were 
able to generate jokes that has high probability to cover the topic words. If not, the joke 
would include those similar to the topic words (e.g. “president” appears when “Obama” 
doesn’t). At the same time, we observed a decrease in sentence fluency. Therefore, during 
the training of our decoder as in Figure 2, we use pre-trained RNN parameters for 
initialization. This approach alleviates the sentence fluency problem. 

 
Figure 2. Training loss over time 

 

 
 



Model Human Evaluation 
Score 

% of Good Jokes 
(Score = 2, 3) 

Human Jokes 2.12 35.3% 

Probabilistic Model 
in [3] (baseline) 1.44 16.3% 

Neural Joke 
Generator 1.59 12.1% 

Score: 0 - nonsense; 1 - not funny; 2 - somewhat funny; 3 - funny 

Table 1. Comparison of different models of joke generation based on human evaluation 

 

Topic 
Words 

Generated Joke (Selected) 

Los Angeles 
Trump 

According to a new study , the governor of film welcome the leading actor of Los 
Angeles area , Donald Trump . 

Apple 
Playboy 

Apple is teaming up with Playboy Magazine in the self driving office . 

Kardashian 
President 

Yesterday to a new attractiveness that allows Bill Kardashian 's wife to agree 
with the U .S . Presidents . In fairness , she said , " My spa . " 

None One of the top economy in China , Lady Gaga says today that Obama is legal . 

None New research finds that Osama Bin Laden was arrested for President on a 
Southwest Airlines flight . 

None Google Plus has introduced the remains that lowers the age of coffee . 

Table 2. Generated joke samples 

4.2  Evaluation 

Our goal is to produce high percentage of funny jokes. The level of funniness is, however, a 
difficult thing to measure. There is no automatic evaluation that we can do on the joke 
generator, because jokes are highly subjective, creative and diverse. They can be employed 
in the form of monologue, question-answer, short stories and can cover a variety of topics 
from food and diet to politics and profession.  

The main evaluation we use on our model is from human ratings, and we want to get a 
percentage of funny ones among all generated jokes. The higher the percentage, the better the 
model is. Human evaluation on jokes can be biased, because “there are a thousand hamlets in 
a thousand people’s eyes”. Cultural references and background knowledge also affect human 
judgement on jokes (e.g. a stormtrooper is a fictional soldier in Star Wars, which might be 
lost on those who are not familiar with the movie). To get a fair evaluation, we showed our 
jokes to five English speakers of different cultural background in a random order. The raters 
were asked to rate each joke on a 4-point Likert-type scale: 0 (nonsense syntactically), 1 (not 
funny), 2 (somewhat funny), 3 (funny). We compare the results of our model with those of 
human jokes as well as the models presented by [3]. 

We use the evaluation of our training data--jokes written by Conan O’Brien--as the 
performance of human jokes. As shown in Table 1, human jokes set a contrast level for how 
good the score and the percentage could be with human minds. The probabilistic model by [3] 



is the baseline that our model compares to. Our neural joke generator has lower percentage of 
good jokes than the baseline model, and it is probably because our model generates the 
whole sentence rather than filling in a few slots of words. Many syntactic errors cause a large 
portion of the generated jokes to be nonsense or not funny. However, the average score of 
our neural joke generator is still slightly better than the baseline. It indicates that among the 
good (“somewhat funny” or “funny”) neural-generated jokes, the percentage of “funny” is 
higher, compared with the baseline. 

From Table 2, we can see that the style of the generated jokes is very similar to Conan’s style, 
short and related to current affairs. RNN arbitrarily put together seemingly unrelated 
concepts, causing incongruity. The generated text could be nonsense, but some of them are 
funny because of incongruity. 

 

5  Conclusion 

We have proposed a new neural network model for mapping arbitrary topics into 
corresponding natural language jokes. The model combines ideas from recent neural network 
architectures for machine translation, factoid question generation, as well as neural image 
captioning (NIC). The produced jokes are evaluated using human evaluation, and are found 
to outperform a probabilistic model [3]. 

As for future work, current corpus is not large enough and a majority of topic words only 
occur a few times. This limits the performance significantly when we choose rare words as 
topic words. In addition, for this paper we only use jokes from one author for easier learning. 
For broad joke generation, we’ll need to incorporate other sources for greater diversity of 
styles and topics. In terms of model structure, our encoder is basically a one-step process 
which looks up and take the averages of embeddings, and we could improve it with a 
sequence model (another separate RNN probably) that treats proper nouns as sequential 
inputs. Apart from that, we could also implement the copying mechanism to make the topic 
words exactly appear in the jokes while not affecting the sentence coherence. 
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