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Abstract

The problem of question-answering is critical in order to improve data retrieval
for text sources. Our group sought to understand and implement current effective
models, and test our own modifications. While we were not able to improve on
test results with our model, the exercise was effective in gaining some intuition
for building deep learning models.

1 Introduction

Question answering systems work by finding answers to questions as substrings within context para-
graphs. Recently, multi-layered deep neural networks have been able to converge as strong predictive
models to answer such questions. We explored a variety of question answering models, and obtained
a best model through an iterative process of model optimizations.

1.1 Background and Related Work

Stanford Question Answering Dataset (SQuAD) is a ”reading comprehension dataset”. It is
composed of passages of text, a question about that text, and an answer directly from the text.
It allows groups to test their question-answering systems against other submissions as well as a
Human Performance benchmark of 82.3 F1, 91.221 EM scores. Our task is to build our own
question-answering system using the SQuAD dataset for training and testing.

Our first motivating design example was outlined by the instructors of CS224n as a ’naive baseline’.
It is outlined as follows:

1. Run a BiLSTM over the question, concatenate the two end hidden vectors and call that the
question representation.

2. Run a BiLSTM over the context paragraph, conditioned on the question representation.

3. Calculate an attention vector over the context paragraph representation based on the ques-
tion representation.

4. Compute a new vector for each context paragraph position that multiplies context-
paragraph representation with the attention vector.

5. Run a final LSTM that does a 2-class classification of these vectors as O or ANSWER.
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As we later discuss, we did not find success with the provided GRU attention cell or LSTM decoder.
However, we did use this encoder.

We felt that a critical component of our system would be the attention mechanism (Step 3). We
decided to follow the mechanism described in ”Bidirectional Attention Flow for Machine Compre-
hension” [1]. We tried only minor modifications to their design.

2 Approach

2.1 Data Preprocessing

We began the project by analyzing the SQuAD dataset in an effort to understand some basic char-
acteristics. For example, we first plotted histograms of the question lengths and context lengths to
get an idea of the distribution. We noted that for each, but especially the context, there were some
outliers that were extremely long. This was useful later on - when we ran into GPU memory ca-
pacity issues, removing outliers in length relieved significant memory strain while not significantly
impacting performance.

2.2 Architecture

At a high level, our system takes in an ordered list of question words and context words, represented
by their indices in a vocabulary list. We were provided GloVe word representations for this
vocabulary. After fetching the appropriate embeddings, our system was designed to learn how
to analyze the ’meaning’ of the context and question. Based on the relationship between the
context words and the question, the system gives two probability distributions. These represent the
probability that a given context word is the starting word or ending word of the answer, respectively.
This representation of the answer is referred to as the ’span’ - extracting all words between the two
indices (inclusively) give the text answer to the given question.

The standard characterization of such a question-answering neural network consists of three
primary components: Encoder, Attention, and Decoder. The encoder is responsible for taking word
embeddings and finding more meaningful representations. The attention mechanism is intended to
identify similarity between words in the context and the question being asked. The decoder takes
the updated context word representations and calculates the probability that the word is the starting
and ending word in the answer.

Below, we will outline the different architectural choices we considered and/or tested. We will detail
the design choices made in Section 3. For simplicity, all cells were created with a hidden state size
of H . Futhermore, D denotes the word embedding size used.

2.2.1 Encoder

BiLSTM
Our input consisted of question word embeddings wQ

t ∈ R1xD for 1 ≤ t ≤ T , and context word
embeddings wC

i ∈ R1xD for 1 ≤ i ≤ N . As suggested in the problem outline, one standard
encoder uses bidirectional RNNs with LSTM cells. First, each word embedding in the question
vector is fed through the bidirectional RNN. The purpose of this is to capture relationships between
the words within the question. The output state of the forward and backward paths are concatenated
to form hQ ∈ R1x2H , our question representation vector. We also have available the hidden states
corresponding to each word in the forward and backward passes. These are also concatenated to
form the question word representations, hQ

t ∈ R1xH .

With a representation for the word, we now want to find representations for the words our context
paragraph. Because we will be analyzing each context word specifically with the question in mind,
we will condition our context embeddings with the question representation. A standard method
for doing this is concatenation. Therefore, each input into our context BiLSTM can be written as
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[wC
i ;hQ] ∈ R1xD+2H . The output of the forward and backward passes are also concatenated to

form conditioned context word representations, hC
i ∈ R1xH .

2.2.2 Attention

Although we did use conditioning of the context words on the question representation, the Attention
mechanism is used to more directly find the relevance of context words to the question. In general,
it will come up with a score, usually a scalar, for each word. This can then be used to weight each
word representation before decoding the results.

GRU
The first attention mechanism was a modified GRU cell. The pseudocode was provided by in-
structors, but our implementation did not seem to work. The concept was to run the input context
representations hC

i through a GRU cell before taking the cosine similarity with the final question
representation hQ.

Simple Dot
Because we suspected an implementation error with the GRU, our next approach was a very basic
one. The second attention mechanism used a basic cosine-similarity scoring. We use these scores to
do a scaling of our context word representations.

ai = hC
i · hQ

â = softmax(a)

ĥC
i = âih

C
i

Bidirectional
Our final attention mechanism was much more complex, as it followed a recent publication by Seo
et. al [1]. Instead of just using the final question representation, it finds similarity between each
context word and each question word, forming a matrix. However, each similarity is not a scalar
but instead a full state. In the paper, a direct Hadamard product was used. We decided that this
would require the question and context representations to be ’parallel’. Therefore we tried adding
an intermediate transformation matrix W l ∈ R2Hx2H . For context word i and question word t, we
calculate Lit = hC

i � (hQ
t W

l). This similarity is concatenated with the input representations to
form a full representation Sit = [hC

i ;h
Q
t ;Lit]. This is projected down to a scalar using a trainable

vector W s to give values ait. The idea here is that we have made available a question and context
word pair as well as a measure of the similarity between the pair. Our projection then has the ability
to find which parts are most relevant in coming up with a scalar similarity score

Once we have this matrix, we can use two mechanisms to use the similarity measures. The first is
Context-to-query, which takes the softmax of a for a given context word across the question words.

âi: = softmax(ai:)

It uses the result to create a representation for the context word that is a convex combination of the
question word representations: Ui =

∑
t âith

Q
t . The second is Query-to-Context, which finds the

highest similarity across context words to each query word, takes the softmax of the resulting array,
and applies the result as weights to the context representation.

ãi = max(ai:)

V = softmax(ã)� hC

Finally, we concatenate these two new representations to the input context word representations. For
dimensionality purposes, we pre-multiplied this by a trainable matrix to get back to a state size of
2H .

ĥC = W s[hC ;U ;V ]
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2.2.3 Decoder

BiLSTM
We first implemented a bidirectional LSTM RNN for the output of the attention mechanism. We
continued to use a hidden layer size of H , so we then projected down to a single value using a
trainable vector. The idea here was to again find the importance of a given word by considering the
relevance of surrounding words.

Dense
We also implemented a simple dense layer. The output score ps = WĥC

i . This method no longer
considers other words, and instead relies on the encoder and attention for this.

Dense with ReLU
Because our bidirectional attention mechanism had no nonlinear components, we were curious
whether we could use another nonlinear layer in our system. We decided to implement a dense
decoder with a ReLU hidden layer: ps = U ·ReLU(WĥC

i + b) where U,W are trainable. We knew
that this would be fed into the softmax function for our loss, so feeding a ReLU directly would be
a bad idea. However, we were curious whether the product with a trainable matrix would work.
Furthermore, by multiplying the context words by a full matrix, we do have the ability to capture
some information about relatedness between context words.

2.2.4 Answering

The output of a decoder was an unscaled score vector for the context words for each the start in-
dex and the end index. For training, we use a softmax and then cross-entropy loss function. For
validation, we used the argmax for our predicted start and end indices, respectively.

2.3 Methodology

Our first goal was to establish working baseline model. The inspiration for this model was provided
by the instructors. It consisted of the BiLSTM encoder with conditioning[2.2.1], the GRU Attention
Cell [2.2.2], and the BiLSTM decoder [2.2.3]. However, we struggled to get this model to converge.
We employed several techniques in order to debug the model. First, we trained on only 10 samples
in order to intentionally overfit. By observing the loss drop, we were able to establish a very basic
confidence in overall code health. We then proceeded to increase the training set size until there
were no signs of model convergence. Because this occurred at only 5,000-10,000 samples (out of
a full corpus of about 80,000 samples), we decided that some component of our architecture was
likely not working.

We decided to further simplify the model by using a simple attention mechanism [2.2.2] and simple
dense decoder [2.2.3]. This model was successful in reaching a baseline performance. We then
proceeded to upgrade the attention mechanism to the bidirection one described. Here, we saw a
significant bump in performance.

Our second goal was to test major hyperparameters and architectural choices, as outlined in
Section 2.2. These hyperparameters included the hidden state size H used throughout the archi-
tecture and the word embedding size D. The focus of our architecture testing was the decoder.
As discussed previously, we wanted to understand whether having a ReLU close to, but not di-
rectly feeding, the output scores would be a poor idea. The results are given in the following section.

The metrics used for this stage of testing consisted of validation loss, F1 score, and Exact-
Match (EM). These values were tracked as the model trained. If the results were clearly worse,
we would cut off the run. If at all promising, the run would be left to completion of 10 epochs.
After running our tests, the highest performing model was kept through the remainder of the process.
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Finally, we wanted to fine tune the minor hyperparameters. This included the learning rate and
optimizer, gradient clipping value, dropout, and batch size. Due to time constraints, not all of these
were fully tuned nor were all combinations attempted. The experiments chosen were based on trends
observed between tests.

3 Experiments

As previously discussed, once we had obtained a working model, our goals were to 1) experiment
with hyperparameters such as hidden layer and word vector dimensionality, and 2) test our different
decoders. Below is a summary of our results.

Figure 1: Summary of Results

We indicate in this table the epoch at which our test evaluation was optimal. We found it noteworthy
that this occurred before we expected. To investigate this further, we plotted our learning curve with
the training and test loss for a typical model. One item for further research into the model is whether
this early convergence is suboptimal. For example, is this an indication of overfitting? Would more
carefully choosing a rage of annealing reach a lower test error?

Figure 2: Learning Curve

4 Conclusion

The experience of designing an encoder-decoder system with only guidance from state-of-the-art
research papers was very challenging but extremely rewarding. We quickly developed a much deeper
understanding of TensorFlow and its nuances. We spent a significant amount of our time debugging
an early model, requiring a complete disection of each feature in our model. By the time we fixed
our bug, we were familiar enough with TensorFlow and the architecture to write out new features in
very little time. In the process, we had many ideas we wanted to test but did not have sufficient time
to. In this section, we will summarize our key findings, analyze our systems performance, and talk
a bit about these ideas.
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4.1 Findings

Our primary observation was that the more complex bidirectional attention mechanism improved
the model performance. Regarding the decoder, we did not obtain distinctive results to make any
conclusion about the impacts of including the ReLU near the output. We believe this is due to one
of two things. First, the added complexity in the decoder may not have any value, as the model is
already beginning to overfit. The second possibility is just that our model’s bottleneck is elsewhere,
and therefore the difference in the decoder is not visible.

4.2 Test Set

To understand how our system is working, we run inference on our development set and examine
our predictions in order to gain insights. Our analysis is detailed below.

Our model performs particuarly well when identifying answers that are proper nouns, dates, or
numbers with question words nearby in the context. This behavior indicates the model’s attention
mechanism is working as expected. Where the model struggles more is determining how to select
the right noun, date or number from a cluster of such information based upon references farther in
the context. In these scenarios, the model gets confused, often outputting the wrong noun, number,
or date from a set of figures in close proximity. One extension we might attempt to achieve better
performance in this realm is to incorporate the dependency structure of the context paragraph in our
learning so as to pick up on references and dependencies that could improve selection accuracy.

Two other areas that our model needs to improve are domain knowledge and similarities. If our
model encouters a domain noun (e.g. ”Unified Diagram Protocol”) and then later answer information
in regards to this question is referenced by another name (e.g. ”network”), our model has no way to
assess the two and understand with so few training examples and that information is lost, resulting
in an empty answer prediction. Similarly, subtle synonyms between the question formulation (e.g.
”What do people say about X?”) and the context formulation (e.g. ”people believe X”) can lead
to lost answers. To improve here, we might experiment with introducing the larger 6B vocabulary
introduced by the assignment handout or pretrain our word vectors on domain texts that are likely to
model these similarities.

Finally, our last major set of issues fall into overelaboration mistakes. There are many times where
a shorter, more direct answer from the context would suffice but our model prefers a longer winded
one. At times, these choices are similar in meaning to the true answer; often though, they are
more a reflection of the system trying to match question and answer similarity (e.g. Q: ”Who has
limited productive potential when faced with less access to education?” Pred: ”those who are unable
to afford an education , or choose not to pursue optional education” when a more simple ans is
”poor”) We should add a component to our model that better learns these question context similarity
emphasis weights, and perhaps penalizes longer answers.

4.3 Future Ideas

We had explored and developed many possible model features, including modifications to the
encoder and decoder. However, we did not have time to fully explore the inter-relatedness of the
components. We hypothesize that a simple test of changing one component while holding all else
equal is not sufficient in making good design decisions. Each component has a performance-to-
complexity trade-off. In other words, a component may add a significant number of parameters
while improving, but not significantly, out-of-sample predictions. It may be more efficient to
remove this marginal improvement for another component, while using both leads to a surplus of
parameters and thus over-fitting. In summary, while we were able to test the inclusion of each
individual component, we were not able to test all combinations of components which could have
significant performance improvements.

We also still believe that a more intelligent decoder would help. One idea was to use the prediction
vector for the start index to inform the ending index and vice versa. This could be done by adding
another layer, or an LSTM with conditioning.

Finally, we had wanted to experiment further with dropout and regularization.
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