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Abstract

Traditional neural machine translation architectures use a word-level approach
that assumes all important words have enumerable and relatively frequent surface
forms. This assumption is invalid for the large number of non-analytic languages
that form new words on the basis of complex morphological processes. Con-
tributing to the quest of finding a universalist architecture that performs well for
all language pairs, Luong and Manning recently suggested a hybrid model that
backs off to character-level representations when word-level representations are
unavailable. We reimplement Luong and Manning’s hybrid model in TensorFlow
and apply it to Arabic machine translation. With this architecture, we are able to
repeatedly saturate our models and achieve a best BLEU score of 42.05, which
approaches state-of-the-art.

1 Introduction

Traditional neural machine translation and statistical translation approaches assume that the basic
unit of meaning for translation is the word. However, this is a false assumption for less analytic
languages, and it leads to a data sparsity problem for languages with rich morphologies. In particular,
in contrast to analytic languages like English, the surface form of a word in a synthetic language may
be different from any words observed during training, yet recoverable if understood in terms of its
observed morphological parts.

Although morphological complexity is common in languages, techniques for addressing it have been
under-studied relative to its real-world frequency. We seek to improve performance of neural ma-
chine translation in languages with rich morphologies. To do so, our approach unites three models.
The core model is a word-level sequence-to-sequence with global bilinear attention. Two additional
character models support the word-level model and are trained simultaneously to it. In the source
language, we develop meaningful dense word embeddings on-the-fly for unknown tokens, and in
the target language, when the word model generates an unknown token, we replace that token with
a generated character-level sequence. This approach is based on Luong and Manning 2016 [[1].

With a hybrid word-character approach that balances the computational efficiency of a word model
with the arbitrary representations possible in a character model, we achieve a BLEU score of 42.05
on Arabic to English machine translation. Given that we were able to saturate multiple increasingly
large models, we expect even further gains are possible with this architecture.

2 Background

Neural machine translation (NMT) directly models the probability of target language sentence
(y1,Y2,---,Yn) given a source language sequence (x1, 2, ..., T, ) using recurrent neural net-
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works. Basic NMT has a word-level encoder, which computes a representation of a sentence h,
and a word-level decoder, which uses the representation of the sentence h and the current decoder
hidden state h; to generate one word at a time. The model maximizes the overall sentence probability
log p(yl):

log p(yle) =Y log p(y;ly<;, hu, ) (1)

j=1
Neural models differ in their unit of analysis and the encoder representation h.

Traditionally, neural machine translation models operate with word as their level of analysis, and
they replace all words x; and y; below a threshold frequency with the unknown token UNK. Re-
cently, however, researchers have begun to focus on performing translation with sub-word structure.
Although working purely at the character-level can be challenging because of the size of the unrolled
RNN, a number of researchers have been making progress in this area:

e Ling et al. [2] introduce a straightforward character-based RNN for NMT.

e Kim et al. [3] and Lee et al. [4] build character-based CNNs for NMT.

e Chung, Cho and Bengio [3]] perform neural machine translation at the character level using
a bi-scale RNN with “fast" and “slow" layers.

Alternative approaches that leverage the core computational speed of a word-based model with
additional information for unknown words include:

e Sennrich et al. [[6], who use character n-grams to encode rare words through subword units.
e Luong et al. [7], who suggest a two-pass system to translate target UNK words by revisiting
the original dataset.

We follow Luong and Manning [[1], who introduce a hybrid neural machine translation model that
backs off to character-level modeling when word-level representations are unavailable.

3 Approach

We unite three models to create a hybrid word-character model, as illustrated in Figure|l} The core
of the model is word-level translation, augmented with character-level models where UNK tokens
appear. The source language character-level encoder creates word embeddings for UNK words, and
the target language character-level decoder generates text for UNK words predicted by the word-level



model. With this approach, we are able to balance the efficiency of limited-vocabulary word-level
translation with the open-vocabulary knowledge of sub-word units gained at the character level.

We train the word-level model on sentence pairs and we train both character models on unknown
words as well as by sampling frequent words from the sentence pairs at a tunable rate. These
components are learned jointly end-to-end with the additive loss function J = J,, + aJ. where
Jw 18 the loss at the word-level, .J. is the loss at the character level, and « controls their relative
importance. This approach removes the need for a separate UNK replacement step as in many current
NMT models. We also implement an in-graph beam search decoder to keep b potential partial
sentences during inference.

3.1 Word-level translation

The word-level model uses an encoder-decoder framework [8} 9] that computes an encoded rep-
resentation for each source sentence. From the encoding, the decoder generates a translation by
predicting one word at a time, which decomposes the sentence probability (see Equation [T)).

For our parallel sentence pair corpus D, we train our model by minimizing the cross-entropy loss:

Jo= Y —logply| =) )

(z,y)€D

Our model uses a bidirectional encoder [10], two-layer architecture with gated recurrent units
(GRU) [[L1]], and the global bilinear attention mechanism first proposed in Luong et al. 2015 [12].
We do not use the sequence-to-sequence model provided by TensorFlow, as it lacks the fine-grained
control needed for the hybrid architecture.

Rather than using raw versions of the encoder state & and the current decoder hidden state h; to
generate the next token in a sequence, global bilinear attention instead uses an “attentional state”
hy. We compute an alignment vector a; between the encoder top-level states h and the current
hidden state h, at each sequential prediction. This alignment vector is then used to weight the source
representation components h. A final linear layer combines the weighted encoder representation and
the decoder hidden state to produce the attentional hidden state hy, and a softmax on the resulting
activations produce our probabilities p(y; |y<;, ht, h) We include two parallel attention mechanisms
so that the model has separate representations available for predicting UNK at the word-level and for
generating the contextual target character sequence.

3.2 Source language character representation

To avoid discarding information when the model encounter words not in the core vocabulary, we use
a multi-layer character-level encoder whose last hidden state becomes an “on-the-fly" embedding
to replace the embedding for UNK. During training, we feed this model with a sub-sample of the
core vocabulary words as well as the unknown words, to encourage it to learn meaningful alphabet
embeddings. For computational reasons, the computation is per-type: with any set of weights, the
same sequence of characters always receives the same embedding.

3.3 Target language character generation

Generation of UNK tokens is typically handled in a post-processing step by either a dictionary look-
up or an identity copy. This approach suffers from alphabet mismatches between the source and
target vocabularies and difficulties handling multi-word alignments. In order to address these issues,
our model includes a separate recurrent model that decodes at the character-level given the current
word-level state whenever the word-level model predicts an UNK. Unlike the source character-level
model, the target character-level model is context-dependent and requires the current context from
the word-level model to produce meaningful translations. We initialize the hidden state of this
model with a separate-path attentional state from the word-level model. We train this model with a
sub-sample of the core vocabulary words as well as unknown words.



3.4 Beam search decoder

During inference, we search through all the possible translations with an in-graph beam search
decoder. Beam search is guaranteed to find a solution that is at least as good as the greedy solution;
it does this by tracking the k best hypotheses at each timestep.

To illustrate beam search, Figure Q] shows a

cute cat EOS
sample sentence “The cute cat” decoded by the nice EOS cat
beam search decoder with beam size b = 2. At The ot r ot
each time step, we feed all the current hypothe- That EOS dog EOS
ses to the decoder and extend each hypothesis
by the two most probable symbols, giving us
four new hypotheses. Then we select the two
most probable hypotheses to feed to the next
timestep. [ Go |'1 The J——{ cute )** cat |-——{EOs ]
1 That |-1 cat ‘ { kitty |-{ cat |
4 Experiments Figure 2: Beam Decoder with Beam Size 2.

We evaluate our approach on Modern Standard Arabic to English translation. We compare multiple
word-only and hybrid comparison models to the BLEU scores reported in Almahairi et al. [[13]], who
provide the only known Arabic neural translation results, and who use an implementation provided
by Cho that seems to be based on Cho et al. 2014 [9]]. Our findings suggest substantial promise in a
hybrid model.

4.1 Data

We evaluate on Modern Standard Arabic news articles. Arabic is the fifth largest language by number
of speakers [[14]], and it is disproportionally under-studied. Arabic exhibits a complex but consistent
morphological system. It has a variety of clitics, affixes, spelling ambiguities, and the root-and-
pattern morphology of Semitic languages.

In order to facilitate comparison to Almahairi et al. [13] — the only Arabic benchmark we are aware
of in the literature — we concatenate and train on LDC2004T18|'l LDC2004T17, and LDC2007T08S.
These comprise about 1.2 million sentence pairs from news articles dated October 1998 through
September 2004. For development, we use NIST OpenMT 2004, collected January 2004 through
March 2004. For test, we use NIST OpenMT 2005, collected December 2004 through January 2005.
No other large-scale Modern Standard Arabic parallel corpora have been collected.

We remove segments that have exact duplicates
in dev and test, and we exclude from our data
any segments that contain more than 50 words 10°9
or any words longer than 30 characters in ei- 105 ]
ther language. We keep approximately 90% of
the data with this preprocessing filter. Our final
dataset consists of 1,087,343 training pairs, 915
dev pairs, and 946 test pairs.
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As preprocessing, we transliterate from Arabic
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figuration. We tokenize both languages using

tokenizer.perl in Moses with the default settings for English, since Arabic tokens are sep-
arated by whitespace except in instances of quoting English-style abbreviations. We also perform

@

"This dataset was derived from automatically parallelizing Arabic Gigaword and reviewing with humans,
and it contained different numbers of segments between the source language and reference translation, with
alignment data to facilitating matching segments. We concatenated these with a space character.



orthographic normalization as per Almahairi et al. [[13]; for instance, we transform all ¢ characters
to (5.

The Arabic text contains a wider variety of tokens than English (322k unique tokens compared to
216 unique tokens in English), and its sentences are shorter (27.0m total tokens compared to 30.3m
total tokens in English). Arabic has more probability in its infrequent words than English (see
Figure [3), and the words in the long tail tend to be morphologically complex, alternately beginning
with affixes like “Al” (the) or “w” (and) or being inflected forms like “mTlbyp” (from “TIb”, fo ask).

4.2 Training

We use 40,000-word vocabularies for both Arabic and English, and we transform any characters
that appear fewer than five times to UNK, leaving an Arabic alphabet of 65 characters and an English
alphabet of 84 characters. We also normalize all digits to 0s. We use Adam optimization [16] with
B1 = 0.9 and B3 = 0.999, a vertical dropout of 0.5, and gradient clipping beyond an absolute value
of 5, and we weight the word- and character-level losses equally.

We train on a GPU in batches of 40 randomly selected training pairs until the training loss begins
to increase, annealing an initial learning rate of 0.001 by halves by hand when the rate of loss
improvement decreasesE] We actively selected the initial learning rate as the largest learning rate
that led to good activations and large but possible updates. We were able to saturate multiple models
within 24 to 48 hours each with this process.

Although we began with a large model following Luong and Manning 2016 [[1] (716m parameters,
240m trainable: word embeddings and hidden size of 1024, 4 layers for word model, LSTM cells),
this model size proved to require 6 days per epoch — similar to the three weeks reported by Luong
and Manning using their MATLAB code. As a result, we reduced the number of parameters by
80% through dropping to two layers for the word model, switching to GRU cells, and decreasing
the word embedding and hidden sizes to 300 units. We initially attempted to use 16-bit precision
floats to keep the same model complexity but halve its size (as per [17, [18]); however, support for
16-bit floats is not universal in TensorFlow and we had to abandon this approach. When that model
trained successfully, we made the model 2.6x larger by increasing the hidden size to 768 and trained
another complete model. We were able to exhaust this model’s capacity as well. We expect that
given additional resources, larger models would produce greater performance.

4.3 Results

We prefer the hybrid model for the theoretical reasons outlined earlier, and our results support being
positive about this approach: Our model’s BLEU score of 42.10 (see Table[I)) achieved with satura-
tion in less than one epoch approaches Almahairi et al.’s reported BLEU score of 48.53. The size
and length of training used by Almabhairi et al. are not stated in their paper, but we expect that both
exceeded the series of models that we trained for this project, and thus that there is strong potential
for exceeding state-of-the-art with this architecture. We have further evidence that larger models
with longer training times can produce even more stellar results in our earliest word-only baseline
model, which we trained with 4 layers and embeddings and hidden sizes of 1024 units, and which
achieved a BLEU score of 47.07 &= 2.13 in only 3.5 epochs.

5 Analysis

We perform qualitative analysis of the model, including exploring the types and frequencies of its
errors and successes. A human analysis indicates that around three quarters of the translations
convey the main idea from the source sentence, though in about one in five sentences, the model
hallucinates entirely new information. We also find in this analysis that the attention mechanism
is important in facilitating the understanding of the sentences, and we are able to verify that the
source language character model is building meaningful representations from characters in the same
embedding space as the word-level model.

2 Although the word-level model could have trained with slightly larger batch sizes, the UNK and frequent
word sampling led to some stochasticity in model size that we did not find a straightforward way to control in
TensorFlow during training.



Table 1: Results. We report the standard deviation in each direction from dividing the predictions
into ten even subgroups and calculating BLEU on those subgroups (£ 1 standard deviation). The
stopping criterion for all these models was saturation.

Model Word Layers Embedding Size  Hidden Size  Attention  Epochs BLEU

Hybrid: Small 2 300 300 Luong 1.7 40.21 £1.01
Hybrid: Larger 2 300 768 Luong 0.7 42.05 £ 1.13
Word-only 2 300 768 Luong 1.4 42.02 £ 1.57

Table 2: Example translations illustrating understanding of word-order, extended inference length,
additional date-time sequence hallucination, and common Arabic-English grammatical mistake with
“mn*” (since). Out-of-vocabulary words for the model appear in angle brackets.

source  wqAl strw AyDA An bryTAnyA stsAEd lybyA Ely AzAlp brAmjhA ItTwyr
AslHp dmAr $Aml kmA ( stsAEdhA ) Ely AlIEwdp Aly AlwkAlp Aldwlyp 11-
TAqp Al*ryp .

human  Straw also said that Britain would help Libya in ending its programs to develop
weapons of mass destruction and would help its return to the International Atomic
Energy Agency .

model  Straw also said Britain would assist Libya to remove its programs to develop
weapons of mass destruction and return to the International Atomic Atomic En-
ergy Agency ( IAEA ) . (IAEA ) . &quot; There will be no doubt . &quot; He
also said that Britain would contribute to

source  Alr}ys Alswry yzwr trkyA fy Awl zyArp mn nwEhA mn* 00 EAmA

human  Syrian President Visits Turkey in First Visit of Its ( Kind ) in 00 years

model  Syrian Prime Minister Rafic Hariri will visit Turkey on his first visit since 00 years
ago . NNNN 0000-00-00 00 0000-00-00 00 : 00 0000-00-00 00 0000-00-00 00
: 00 0000-00-00 00 : 00 0000-00-00 00 0000-00-00 00 : 00 0000-00-00 00 : 00
0000-00-00 00 0000-00-00 00 : 00

5.1 Qualitative analysis and error analysis

We conduct a blind hand-analysis of 30 inferences selected at random to gain quantitative and qual-
itative insights into the performance of the model. We find at the highest level that approximately
77% of the translations convey the main idea from the source sentence, but that 43% of them engage
in unnecessary repetition, 37% include at least some amount of word salad, and 17% hallucinate
entirely unsupported information, such as that there were no casualties in an armed clash. Sample
translations appear in Table 2]

The model has a tendency to predict periods without EOS. We suspect there are two causes to this
behavior. First, the English language data include 89,213 examples in which periods are followed by
additional text (primarily, but not exclusively, the quot; token). Second, the beam search decoder
realizes scores cannot be maximized when EOS is predicted, and it takes advantage of the potential
ambiguity regarding what follows a period.

In addition to postponing prediction of EOS, the model has unnatural tendency to generate date-
time sequences following its contentful translations. This behavior occurs in about 17% of the
translations. This is the result of a particular target training data source, which regularly ends in
sequences like “NNNN 2003-02-10 08 : 36 : 45 2003-02-10 08 : 36 : 46 1598”. Although there are
only 29 instances of this kind of sequence in over one million examples, the model learns it as a unit
and applies it when it expects the initially generated sequence is similar to the shorter, headline-like
segments that it observed with this sequence during training.

The model also notices and ignores the idiomatic use of the prefix “w” (and) to begin verb-fronted
sentences; this use of and should rarely be translated directly. The model is also clever enough to
realize that when the less-common word “AyDA” (also) is part of the source sentence, the sense
of addition should be included in the translation. It seems to have no trouble with Arabic’s use
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Figure 4: Sample attention alignments. The reference translation is “An Israeli military source told
Agence France Presse that soldiers were on a patrol in Nablus, where a curfew has been imposed,
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and opened fire at a group of Palestinians ‘throwing stones at them’.

of verb-subject-object word order or with adjective phrases following nouns, although English is
grammatically different on both counts.

5.1.1 Attention

The attention mechanism is central to translation success. Figure []illustrates that attention reflects
the reversed word order of Arabic compared to English at the beginning of the sentence (“wqAl mSdr
Eskry AsrA}yly”: and-he-said source military Israeli). The model pays close attention to key words
like “frAns” (France), “wWATIqwA AlnAr” (release fire), and “AlflsTynyyn” (the-Palestinians).

Grammatically, we also notice the model performing correct one-to-many transitions from Arabic
to English, such as the relative pronoun “Alty” in “nAbls Alty frD” (Nablus that imposed) being
matched to both a comma and the relative pronoun “which” in English, and “AlflsTynyyn” (the-
Falestinians) being matched to both “the” and “’Palestinians”. We have further evidence of the im-
portance of the attentional alignments when we note that “bAlHjArp” (with stones) receives minimal
attention during inference and does not appear in the inferred translation.

5.1.2 Embedding quality

To assess whether the source language model is adequately building embeddings for unknown
words, we qualitatively evaluate it by visualizing the character-derived and learned word unit em-
beddings of a sampling of words with t-SNE [19] (see Figure [5). From the visualization we see
that the method performs reasonably well with more complicated words: it brings together nouns
like “Alr}ys” (the-president), preposition-noun pairs like “bAglAq” (with-shutdown), and definite
adjectives like “AlmtwqE” (the-expected).
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are colored red.

6 Conclusion

We implement a neural translation model in TensorFlow that is theoretically appealing in its freedom
from dependency on the assumption that words and morphemes are equivalent, and which performs
just as well with less training time than a word-only model. We achieve approximately state-of-the-
art results for Arabic-to-English translation, and we suspect that with a larger model, our architecture
would achieve better results than have previously been reported. We would like to extend this model
to English-to-Arabic translation; in particular, we suspect that introducing a character-level attention
mechanism would facilitate generating Arabic’s root-and-pattern plus affix morphology.
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