

Question Answering with Multi-Perspective
Context Matching

Joey Asperger

Department of Computer Science
Stanford University
Stanford, CA 91305

Joey2017@stanford.edu
Codalab username: joeyasperger

Abstract

In this paper, I tackle the challenge of answering questions
based on a context paragraph. To solve this problem, I
implemented Multi-Perspective Context Matching based on the
paper by Wang et. al. It took a very large amount of effort to get
this baseline model working, so I didn’t have much time to
implement my own original ideas in the model. However, this
still performed very well relative to most of my classmates,
scoring 71% F1 and 60% EM. I would attribute this success
largely to the fact that I did not trim the GloVe vectors and that
I used character-level embeddings. In future work, I think a
useful idea to explore would be to not predict the start and end
indices independently, but to first predict the start index and
then run an LSTM from this index in order to predict the end
index.

1 Introduction
Machine comprehension is a very difficult problem to solve. It can require
understanding a wide variety of different words and language constructs, as
well as reasoning over significant chunks of text. This project delves into the
problem of answering questions based on a context paragraph. There are
countless real-world applications of this problem, including making better
search engine results and better digital assistants.

1.1 The Data
The Stanford Question Answering Database (SQuAD) was used as the dataset
for this project. It contains over 100,000 question-answer pairs covering over
500 different articles. The questions are all asked in natural language, and
often have fairly challenging answers. Success on this dataset is measured by

F1 score (the harmonic mean of precision and recall) and percent of exact
matches (EM score.) An average human scores 91% and 82%, respectively,
while a baseline logistic regression model scores 51% and 40%.

2 Model
My model my is based almost entirely off the model proposed by Wang et. al.
in Multi-Perspective Context Matching for Machine Comprehension. This
model involves 6 main layers shown in figure 1 below. In the following
sections, I will describe each layer in more detail.

Figure 1: Multi-Perspective Context Matching (Wang et. al.)

2.1 Word Representation Layer
Each word in the context paragraph and the question was represented by a d-
dimensional vector. This representation consisted of both word-level
embeddings and character-level embeddings. The word-level embeddings
were taken from GloVe vectors that were pre-trained on the 840-billion-word
Common Crawl Corpus. The character-level embeddings were created by
using a max-pooled convolutional neural network that was then fed into a 1-
layer highway network.

2.2 Fi l ter Layer
The purpose of this layer is to give higher weight to words in the context

paragraph that are more relevant to the question. To do this, it calculates the
cosine similarity between each pair of context and question words. It then
takes the maximum similarity of each context word with any question word.
Each context word representation is then multiplied by this max similarity.

2.3 Contextual Representation Layer
In this layer, Bidirectional Long Short-Term Memory Recurrent Neural
Networks (BiLSTMs) are run on the questions and filtered context. This
allows contextual information from the surrounding words to be transmitted
to each word.

2.4 Mult i -Perspective Context Matching Layer
This layer compares each context representation with question representations
using a weighted cosine similarity. There are 6 types of comparisons in this
layer: taking the max similarity with any question word, the mean similarity
with all question words, the similarity with the final LSTM output of the
question, and repeating these 3 types in the reverse LSTM direction. For each
of these comparison types, multiple perspectives are used, meaning both the
context and question representations are multiplied by a learned weight
matrix before taking the cosine similarity, so different perspectives will
weight features differently. This results in a representation for each context
word that is 6 x m where m is the number of perspectives used.

2.5 Aggregation Layer
This layer takes the output from MPCM layer and runs another BiLSTM over
it to order to encode information about the surrounding matches.

2.6 Predict ion Layer
This layer uses two single-hidden layer feed-forward neural networks to
predict the softmax probability of each word independently being the start or
end word of the answer.

3 Implementation and Training
I implemented the model using Google's TensorFlow library. For my word
representations, I used 300-dimensional GloVe vectors trained on the 840
billion word Common Crawl Corpus. For the character representations, I used
100 max-pooled convolutions of width 5. Every BiLSTM used a state size of
100 for each direction. For the highway network and the prediction network,
Relu was used as the nonlinear activation function. Only 10 of each
perspective type was used due to memory constraints. In total, this model had
1,005,972 trainable parameters. I used a dropout rate of 0.2 between each
layer in order to help regularize the model. I used trained for 9 epochs using
an softmax cross-entropy loss and an Adam Optimizer with a learning rate of
0.001. During training, the validation loss approached its minimum after

approximately 6 epochs and then only made very minor improvements after
that. Figure 2 below shows cross-entropy loss across epochs.

Figure 2: Cross-entropy loss across epochs

4 Results
Dataset F1 Score EM Score Leaderboard Rank
Dev Set 71.3 60.6 #8
Test Set 70.7 60.3 #5
As can be seen in the table above, my model performed quite well. It
performed approximately 20 points higher than the logistic regression
baseline, but still lagged behind the state-of-the-art models by about 13
percentage points.

4 Discussion
Overall, my model performed very well, achieving high ranks on both the dev
and test leaderboards. I think two of the most significant factors in setting my
model apart from my classmates' were that I used the 840B Common Crawl
GloVe vectors with no trimming and that I also used character embeddings.

In comparison to the original single-model MPCM model designed by Wang
et. al., my model scores approximately 5% lower on both F1 and EM score.
Based off their ablation study, 2 of those percentage points are likely caused
by the fact that I only used 10 perspectives instead of 50 due to GPU memory
constraints. The reason for the other 3 percentage points of difference is
unclear, but most likely due to hyperparameter tuning. The most significant
difference between my model and that of Wang et. al. is that I used a
CNN/Highway character embedding instead of an LSTM character
embedding. However, I don't think it is likely that this choice made a
significant performance difference.

My original goal was to implement MPCM and then try to make original
improvements to it. Unfortunately, it took a very significant amount of time to

get this baseline MPCM model working, so I didn't have time to try out any of
my own ideas. Hopefully, I'll have the opportunity to experiment more with it
in the future. However, I am still very happy with my results with the baseline
MPCM model.

4 Future Work
One problem I frequently saw in predictions was that the model would predict
the start index correctly, but then predict a completely wrong index for the
end of the answer, creating a long, run-on answer. This probably happens so
frequently because the start and end indices are predicted completely
independently. If the prediction for the end index were to incorporate more
information on which index was selected for the start index, it might be able
to make better predictions because it would be able to use this information to
tell when a sufficient amount of information has been given in the answer and
therefore be able to terminate better. Therefore, one idea I would experiment
with is to try predicting the start index and then using an LSTM starting from
that start index and using the LSTM output for each word to predict the
probability of that word being the end of the answer.

Acknowledgments
Special thanks to Microsoft for providing a GPU for training as well as to the
entire course staff for their support.

References
Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. Multi-perspective context matching for machine
comprehension. arXiv:1612.04211, 2016.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hananneh Hajishirzi. Bi-directional attention flow for
machine comprehension. arXiv:1611.01603, 2016.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. arXiv:1606.05250, 2016.

