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Abstract 

In this paper, I tackle the challenge of answering questions 
based on a context paragraph. To solve this problem, I 
implemented Multi-Perspective Context Matching based on the 
paper by Wang et. al. It took a very large amount of effort to get 
this baseline model working, so I didn’t have much time to 
implement my own original ideas in the model. However, this 
still performed very well relative to most of my classmates, 
scoring 71% F1 and 60% EM. I would attribute this success 
largely to the fact that I did not trim the GloVe vectors and that 
I used character-level embeddings. In future work, I think a 
useful idea to explore would be to not predict the start and end 
indices independently, but to first predict the start index and 
then run an LSTM from this index in order to predict the end 
index. 
 

1 Introduction 
Machine comprehension is a very difficult problem to solve. It can require 
understanding a wide variety of different words and language constructs, as 
well as reasoning over significant chunks of text. This project delves into the 
problem of answering questions based on a context paragraph. There are 
countless real-world applications of this problem, including making better 
search engine results and better digital assistants. 
 
1.1 The Data 
The Stanford Question Answering Database (SQuAD) was used as the dataset 
for this project. It contains over 100,000 question-answer pairs covering over 
500 different articles. The questions are all asked in natural language, and 
often have fairly challenging answers. Success on this dataset is measured by 



F1 score (the harmonic mean of precision and recall) and percent of exact 
matches (EM score.) An average human scores 91% and 82%, respectively, 
while a baseline logistic regression model scores 51% and 40%. 
 
2 Model  
My model my is based almost entirely off the model proposed by Wang et. al. 
in Multi-Perspective Context Matching for Machine Comprehension. This 
model involves 6 main layers shown in figure 1 below. In the following 
sections, I will describe each layer in more detail. 
 

 
Figure 1: Multi-Perspective Context Matching (Wang et. al.) 

 
2.1 Word Representation Layer 
Each word in the context paragraph and the question was represented by a d-
dimensional vector. This representation consisted of both word-level 
embeddings and character-level embeddings. The word-level embeddings 
were taken from GloVe vectors that were pre-trained on the 840-billion-word 
Common Crawl Corpus. The character-level embeddings were created by 
using a max-pooled convolutional neural network that was then fed into a 1-
layer highway network. 
 
2.2 Fi l ter Layer   
The purpose of this layer is to give higher weight to words in the context 



paragraph that are more relevant to the question. To do this, it calculates the 
cosine similarity between each pair of context and question words. It then 
takes the maximum similarity of each context word with any question word. 
Each context word representation is then multiplied by this max similarity. 
 
2.3 Contextual  Representation Layer   
In this layer, Bidirectional Long Short-Term Memory Recurrent Neural 
Networks (BiLSTMs) are run on the questions and filtered context. This 
allows contextual information from the surrounding words to be transmitted 
to each word. 
 
2.4 Mult i -Perspective Context  Matching Layer 
This layer compares each context representation with question representations 
using a weighted cosine similarity. There are 6 types of comparisons in this 
layer: taking the max similarity with any question word, the mean similarity 
with all question words, the similarity with the final LSTM output of the 
question, and repeating these 3 types in the reverse LSTM direction. For each 
of these comparison types, multiple perspectives are used, meaning both the 
context and question representations are multiplied by a learned weight 
matrix before taking the cosine similarity, so different perspectives will 
weight features differently. This results in a representation for each context 
word that is 6 x m where m is the number of perspectives used. 
 
2.5 Aggregation Layer 
This layer takes the output from MPCM layer and runs another BiLSTM over 
it to order to encode information about the surrounding matches. 
 
2.6 Predict ion Layer 
This layer uses two single-hidden layer feed-forward neural networks to 
predict the softmax probability of each word independently being the start or 
end word of the answer. 
 
3 Implementation and Training 
I implemented the model using Google's TensorFlow library. For my word 
representations, I used 300-dimensional GloVe vectors trained on the 840 
billion word Common Crawl Corpus. For the character representations, I used 
100 max-pooled convolutions of width 5. Every BiLSTM used a state size of 
100 for each direction. For the highway network and the prediction network, 
Relu was used as the nonlinear activation function. Only 10 of each 
perspective type was used due to memory constraints. In total, this model had 
1,005,972 trainable parameters. I used a dropout rate of 0.2 between each 
layer in order to help regularize the model. I used trained for 9 epochs using 
an softmax cross-entropy loss and an Adam Optimizer with a learning rate of 
0.001. During training, the validation loss approached its minimum after 



approximately 6 epochs and then only made very minor improvements after 
that. Figure 2 below shows cross-entropy loss across epochs. 

 
Figure 2: Cross-entropy loss across epochs 

4 Results  
Dataset  F1 Score EM Score Leaderboard Rank 
Dev Set  71.3 60.6 #8 
Test  Set  70.7 60.3 #5 
As can be seen in the table above, my model performed quite well. It 
performed approximately 20 points higher than the logistic regression 
baseline, but still lagged behind the state-of-the-art models by about 13 
percentage points. 
 
4 Discussion 
Overall, my model performed very well, achieving high ranks on both the dev 
and test leaderboards. I think two of the most significant factors in setting my 
model apart from my classmates' were that I used the 840B Common Crawl 
GloVe vectors with no trimming and that I also used character embeddings. 
 
In comparison to the original single-model MPCM model designed by Wang 
et. al., my model scores approximately 5% lower on both F1 and EM score. 
Based off their ablation study, 2 of those percentage points are likely caused 
by the fact that I only used 10 perspectives instead of 50 due to GPU memory 
constraints. The reason for the other 3 percentage points of difference is 
unclear, but most likely due to hyperparameter tuning. The most significant 
difference between my model and that of Wang et. al. is that I used a 
CNN/Highway character embedding instead of an LSTM character 
embedding. However, I don't think it is likely that this choice made a 
significant performance difference. 
 
My original goal was to implement MPCM and then try to make original 
improvements to it. Unfortunately, it took a very significant amount of time to 



get this baseline MPCM model working, so I didn't have time to try out any of 
my own ideas. Hopefully, I'll have the opportunity to experiment more with it 
in the future. However, I am still very happy with my results with the baseline 
MPCM model. 
 

 
4 Future Work 
One problem I frequently saw in predictions was that the model would predict 
the start index correctly, but then predict a completely wrong index for the 
end of the answer, creating a long, run-on answer. This probably happens so 
frequently because the start and end indices are predicted completely 
independently. If the prediction for the end index were to incorporate more 
information on which index was selected for the start index, it might be able 
to make better predictions because it would be able to use this information to 
tell when a sufficient amount of information has been given in the answer and 
therefore be able to terminate better. Therefore, one idea I would experiment 
with is to try predicting the start index and then using an LSTM starting from 
that start index and using the LSTM output for each word to predict the 
probability of that word being the end of the answer.  
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