
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

CS224n Assignment 4: Machine Comprehension with
Exploration on Attention Mechanism

Chen Guo
Institute of Computational and Mathematical Engineering

Stanford University
Stanford, CA 94305

cguo2@stanford.edu
CodaLab User Name: cguo2

Abstract

This goal of this paper is to perform the prediction task on SQuAD dataset about reading compre-
hension. Given a pair of context paragraph and a question, we’ll output an answer. To do this, a
model is built combining the idea of Bidirectional LSTM and attention flow mechanism. The basic
architecture and setup details of the model are introduced, so do the summary of performance and
error analysis during experiments. Further more, the main exploration part would be focused on how
to plug appropriate attention mechanism into the whole neural network architecture.

1 Introduction

In this project, I focused on both achieving the goal of high-performance question answering on SQuAD dataset and
also exploring different models to see how do model architecture and initial setup influence the performances of our
prediction performance.

As a first step, we have to find a method to represent the context paragraph and question in an appropriate way which
can carry as much as the information contained in both of them. We choose pre-trained embedding vectors to represent
the words in contexts and questions. Then we apply bidirectional LSTM model on contexts and questions to allow the
model to understand them as a whole instead of every single word separately, such that our representation would make
more sense of the environment around the target words.

After we got a good representation of both contexts and questions, here comes the crucial part of this project: how
to make connections between questions and contexts so that the model can highlight the words that are related to the
specific questions. Thats also what my exploration mainly focused on: attention mechanism. We need to map the
question representation to the context representation to understand the fusion relations between the two of them.

Based on the attention matrix, the model will further more give a final representation of every word in the context
paragraph carrying the information extracted from our attention mechanism. Two probability distribution will then
output based on that, one being the probability of every word as the starting token of the correct answer, the other
being the probability of every word as the ending token of the correct answer.

I’ve tried four different models. Two of them has the same architecture but different fusion functions, the other two
share the same structure with different hidden state sizes. I compare these models in terms of basic performance (F1
and EM), training speed, convergence rates, stability on gradient norms also the parameters and special setups they
separately need.

1



052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

2 Related Work

For the newly-released SQuAD dataset, a lot of work has been done to produce a Neural QA System, which gives very
decent results. Although different models make use of different model architectures, the most variation is located on
the attention mechanism, which is the essential module of modeling complex interactions between context paragraphs
and questions.

In [1], co-attention encoder is used to attend the question and document simultaneously and finally fuses both attention
contexts. After generating the foundation for selecting the best span, they make use of dynamic pointing decoder which
takes into account the current estimates of start and end positions and produces new estimates of the start and end
positions. Although we didn’t use dynamic attention mechanisms at last, we are inspired by the attention mechanisms
introduced in this paper.

In [2], the author made use of attention flow and generated query-to-context representation and also context-to-query
representation. The attention mechanism is static instead of dynamic, which allows the model separately split the
energy on both parts. The model is creative in using element-wise multiplication on many parts of the whole process,
proved to be successful to capture the interaction of vectors/matrices. Also the model functionize many specific steps,
allowing people to try different functions (like fusion function and final query-aware representation).

3 Approach

3.1 Initial Understanding of the data

To understand better about the dataset, we plot the distribution of context paragraph length, question length and answer
length in Figure 1. Telling from the data, truncating the context paragraph length at 500 600 might be a reasonable
choice.

Figure 1: Distribution of Lengths of Context, Question and Answer

3.2 General Approach

The two models I tried are based on the same general approach summarized by [1]. The model structure can be
formulated as 2 and briefly described as below:

• Word-level Embedding Layer: Based on GloVe pre-trained embeddings, we can represent every word in the
context/question as a vector. In this specific problem, we use 100-dimensional trimmed vectors as embedding
reference. From the step, we get ∈ RT×d, Q ∈ RJ×d where T and J are the lengths of context and question.

• Contextual Embedding Layer: Pass the word-level embeddings into bi-directional LSTM. This will let the
embeddings include the useful information contained in the environment.

• Attention Flow: Based on the valid embeddings, we can get attention matrix with dimension T × J .

2



104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Figure 2: General Structure of the Model

• Query-aware Mixing: Given the attention matrix, we can get a better representation of contexts carrying the
information in the question, so-called query-aware mixing. This will lead to an matrix with dimension T ×D
where D is defined custom as hidden size.

• Decoding: Using the representation of query-aware mixing, we should be able to get probability distribu-
tions (one for starting index, the other for ending index) by making use of more LSTM cells, simple linear
transformation and softmax functions.

We’ll mainly discuss two models here, which are based on the general approach above. The main difference is located
in the last three steps: getting attention matrix, generating query-aware representation and decoding to probabilities.

3.3 Model 1: Sequence Attention Mix Model

Sequence Attention Mix Model is one of the simple baseline models which utilizes mixing attention mechanism.
Assuming that the maximum length of context and the maximum length of question is T and J , the embedding size d.
Then the model architecture is set up like:

Word-level Embedding:X ∈ RT×d, Q ∈ RJ×d

Contextual Embedding:X Bi−LSTM−−−−−−−→ H ∈ RT×2d, Q
Bi−LSTM−−−−−−−→ U ∈ RJ×2d

Attention Flow:A = softmax(HUT )

Query-aware Mixing:M = [AU,H] ·W + b where W ∈ R2d×D, b ∈ RD

Decoding:M Bi−LSTM−−−−−−−→M ′ ∈ RT×D

Mwp = P,M ′w′p = P ′ where wp, w
′
p ∈ RD×1

Loss:L = −(log pstart[true start] + log pend[true end])

where the attention flow is simply the matrix multiplication of the contextual embedding matrices. And the query-
aware mixing is basically combining both the original contexts and attention-based representation. This model involves
variation as the choice of hidden size D, we’ll conduct experiments on different choices D. Suppose d = 100 for both
embedding size and LSTM output size, we tried D1 = 2d and D2 = 4d.

3.4 Model 2: Bi-directional Attention Flow Model

Bi-directional Attention Flow Model is the model described in [2], where they achieved the state-of-art results on
SQUAD dataset. The model I test is a slightly simplified version of the model in the paper. I removed the character
embedding part but only used word embeddings. This model used more complicated query-aware representations.
The model setup can be described here:

3



156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

Word-level Embedding:X ∈ RT×d, Q ∈ RJ×d

Contextual Embedding:X Bi−LSTM−−−−−−−→ H ∈ RT×2d, Q
Bi−LSTM−−−−−−−→ U ∈ RJ×2d

Attention Flow:A = α(H,U) ∈ RT×J

Query-aware Mixing:b = softmax(max
row

(A)) ∈ RT

Ũ = AU ∈ RT×2d, H̃ = b · 11×2d ◦H ∈ RT×2d

G = [H, Ũ ,H ◦ Ũ ,H ◦ H̃] ∈ RT×8d

Decoding:G Bi−LSTM−−−−−−−→M ∈ RT×2d,M
Bi−LSTM−−−−−−−→M ′ ∈ RT×2d

[G,M ]wp = P, [G,M ′]w′p = P ′ where wp, w
′
p ∈ R10d×1

Loss:L = −(log pstart[true start] + log pend[true end])

where the fusion function for attention flow is generalized to a function that take two matrices of dimension T × 2d
and J × 2d and output a matrix with dimension T × J . Further more, the query-aware mixing is more complicated
than the baseline model, it generates context-to-query attention flow and query-to-context attention flow at the same
time. Then concatenation and element-wise multiplication are used to combine the representations together. For
this model, the main variations I tried are located on the attention flow fusion function: A1 = softmax(HUT ) and
A2[i, j] = [Hi·, Uj·, Hi· ◦ Uj·].

3.5 Search for Answers

After we got the probability distribution, we use the following algorithm to search for the best answer span satisfying
(s, e) = maxs≤e pstart(s)× pend(e).

Algorithm 1 Answer Span Searching Algorithm
From above we get P and P ′.
Normalize: pstart = Cmask · softmax(P ), pend = Cmask · softmax(P ′).
Best start s = 0, best probability p = 0 and best answer a = (0, 0).
for k in 1:n do

if pstart[k] > pstart[s] then
s = k.

end if
if pend[k] ∗ pstart[s] > p then
p = pend[k] ∗ pstart[s]
a = (s, k)

end if
end for
return a

4 Experiments

4.1 Summary

For the Sequence Attention Mix Model, we tried two variations D1 = 2d and D2 = 4d where d = 100. For Bi-
directional Attention FLow Model, we tried two variations with A1 = softmax(HUT ) and A2[i, j] = [Hi·, Uj·, Hi· ◦
Uj·]. The summary of the four trials are in Table 1. In terms of the specific hyper-parameters in the training. We used
maximum context length as 600 and maximum question length as 60. Dropouts are added after each LSTM layer and
also before the final softmax function after linear transformation.

4



208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Table 1: Experiments Summary

Model 1 Model 1 Model 2 Model 2
with D1 with D2 with A1 with A2

Dropout 0.9 0.85 0.8 0.8
Learning Rate 0.01 0.005 0.01 0.01

Gradients Exploding Exploding Stable Stable
Num of Parameters 0.5M 1.1M 1.2M 1.2M

Time/Epoch 0.7h 2.5h 3.3h 6.0h
Best F1 28% 30% 52% 35%
Best EM 19% 21% 38% 24%

4.2 Findings and Thoughts

From experiments, we have some findings and intuitive thoughts in terms of the model performance, implementation
and hyper-parameter tuning.

• How does dropout help? Is it helpful for all methods? Not Really. For Model 1 with D1, the model
does not suffer from over-fitting problem because the model only has 0.5 million parameters. Considering
that the variables in each sample is roughly 100 × (600 + 60) (embedding size is 100 and context length
and question length are separately 600 and 60) which is around 0.6 million. For this situation, the model is
more under-fitting than over-fitting. However, for more complex models like Model 2, dropouts do help with
over-fitting problems.

• Observation about gradients. We observed exploding gradients phenomenon for Model 1, we must use
gradient norm clipping for the purpose of stability. But for model 2, the gradient norm is pretty stable,
basically around 1.

• Model Capacity and Performance. If we use the number of model parameters to represent the model
capacity, we want to know if there are any significant relationship between model capacity and performance.
For model 1, when we increase the hidden size from 200 to 400, the number of model parameters also
doubled. The training time also doubled. However, the model performance didn’t see any drastic increasing.
My conjecture is that under this case, the model structure is the bottle neck of the performance but not the
model capacity. Simply increasing the number of parameters doesn’t help for model structure that is not
complicated enough. We haven’t got the time to train Model 2 with larger hidden state size. My guess is that
it would help more because the model is more complicated.

• Model Implementation. The models I tried include a lot of matrix transformations, especially Model
2. For example, if we want to multiply matrix with size [batch size, max context length,
state size] and another matrix with size [state size, max question length]. We need to
reshape first then do multiplication then reshape back. This might be computationally expensive, because
the use of fusion function A2 for Model 2 increases the training time a lot because I didn’t find a good way
to implement it. Also the steps for calculating query-aware representation are not really well implemented.
Because it involved a lot of transpose and reshape. The biggest regret for this project might be this: It would
be better if I could find a better implementation of the model.

4.3 Analysis of the Best Model

During the training of the best model among the above four trials, we plot the changing of loss and gradient norms as
training in Figure 3. We can see that the loss got decreased drastically in the first epoch and then got better slightly in
the future training. At the same time, the gradient norm kept very stable around the region of [1, 2].

For different categories of questions, we did the error analysis on validation set. We can see the number of questions,
F1 and EM score for each category in Table 2. We can see that, as expected, our model performed better on questions
with When, Where and Who, which are intuitively easier to locate the exact answers. However, for questions like
Why, we have relatively worse F1 but still acceptable. However, the gap between and F1 and exact match score is very
high. Intuitively, the answers for Why questions are more vague and subtle so it’s hard to capture the exact answer

5



260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

0 100 200 300 400 500
Training (Batch Size = 80)

0

2

4

6

8

10

12

14

V
a
lu

e

Loss
Gradient Norm

Figure 3: Changing of Loss and Gradient Norm during Training

span. Another observation is about the difference between Where and Who. They have similar F1 score but the EM
scores have larger difference. This is probably because the name of person is easier to recognize, although the names
of places are more subtle.

Table 2: Error Analysis

Category Number F1 EM
When 349 61.7 43.3
Where 173 55.5 37.0
Who 424 56.5 42.2
Why 85 40.2 14.1

Which 98 48.5 31.6
How 382 57.0 40.1
What 2019 51.0 32.1

5 Conclusion

References

[1] Xiong, C., Zhong, V., & Socher, R. (2016). Dynamic Coattention Networks For Question Answering. arXiv
preprint arXiv:1611.01604.

[2] Seo, M., Kembhavi, A., Farhadi, A., & Hajishirzi, H. (2016). Bidirectional Attention Flow for Machine Compre-
hension.arXiv preprint arXiv:1611.01603.

6


	Introduction
	Related Work
	Approach
	Initial Understanding of the data
	General Approach
	Model 1: Sequence Attention Mix Model
	Model 2: Bi-directional Attention Flow Model
	Search for Answers

	Experiments
	Summary
	Findings and Thoughts
	Analysis of the Best Model

	Conclusion

