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Abstract

This paper replicates the results of Dai, Olah, and Le’s paper ”Document Embed-
ding with Paragraph Vectors” and compares the performance of three unsuper-
vised document modeling algorithms [1]. We built and compared the results of
Paragraph Vector, Latent Dirichlet Allocation, and traditional Word2Vec models
on Wikipedia browsing. We then built three extensions to the original Paragraph
Vector model, finding that combinations of paragraph structures assist in optimiz-
ing Paragraph Vector training.

1 Introduction

The optimization of similarity detection between documents–and those implications for vector repre-
sentations of text–serve as an open question in the field of Natural Language Processing. Improving
vector representations is a popular goal among contemporary NLP papers, and recent contribu-
tions to this field frequently utilize Paragraph Vectors. Well-known vector generation models like
Word2Vec now compete with the likes of Paragraph Vectors.

First introduced by Le and Mikolov in 2014, a paragraph vector is an unsupervised framework that
can learn a variable length of text. In this model, the paragraph vector is concatenated with numerous
word vectors from a paragraph to predict the following word. The model uses stochastic gradient
descent and back propagation to train the word vectors and Paragraph Vectors. The word vectors are
shared; the Paragraph Vectors are unique [2].

2 Background/Related Work

Paragraph Vectors were first introduced by Le and Mikolov’s 2014 paper, ”Distributed Representa-
tions of Sentences and Documents.” The paper outlines several variations of the Paragraph Vector
representations: Distributed Bag of Words version of Paragraph Vector (PV-DBOW), Distributed
Memory version of Paragraph Vector (PV-DM), and a model that is a concatenation of the two [2].
When trained on a fairly large IMBD dataset these vectors obtain a lowest error rate of 3.82%. In
comparison, Le and Mikolov achieved a 10.25% error rate for vector averaging, 8.10% for bag-of-
words, 7.28% for bag-of-bigrams, and 5.67% for weighted bag-of-bigrams.

In 2015, Dai, Olah, and Le published ”Document Embeddings With Paragraph Vectors,” in which
they compared Paragraph Vectors to a number of other document representations including LDA,
Bag of Words, and averaged word vectors on two semantic analysis tasks: Wikipedia and arXiv
article browsing. They supported the 2014 paper by showing that paragraph vectors outperformed
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every other representation with a high accuracy of 93% on a full Wikipedia corpus data set and
extended the usability of paragraph vectors as effective in local and non-local browsing of large
corpora.

Since then, a number of additional academic papers have been produced that study variations on
the paragraph vector model. Grzegorczyk and Kurdziel’s 2016 paper, ”Binary Paragraph Vectors,”
extended Paragraph Vectors by introducing a sigmoid nonlinearity before the softmax that predicts
words in documents [3]. Their introduced Binary Paragraph Vectors were generated by simple
neural networks that learned short binary codes for fast information retrieval. Grzegorczyk and
Kurdziel found that binary paragraph vectors outperform autoencoder-based binary codes, despite
using fewer bits.

Palangi, Deng et al.’s 2015 paper, ”Deep Sentence Embedding Using Long Short-Term Memory
Networks: Analysis and Application to Information Retrieval,” found that the use of bidirectional-
LSTM-RNNs demonstrated an improvement of 5.2% over Paragraph Vector usage in information
retrieval. Given modifications to and contemporary interest in Paragraph Vector representations in
NLP, and the improvement of PV within NLP-related fields from document clustering to information
retrieval, we examine possible optimizations for PV.

3 Approach

For our research, we chose to replicate the results above from Dai, Olah, and Le’s 2015 paper
”Document Embeddings With Paragraph Vectors.” Beyond establishing comparative models with
Latent Dirichlet allocation (LDA) and Word2Vec with CBOW, we sought to replicate the accuracy
of Paragraph Vectors and to extend a baseline PV in an attempt to optimize the accuracy of PV in
topic clustering.

We chose several variations of paragraph vectors mentioned both in Dai, Olah, Le’s paper and in
Le, Miklov’s paper. These include three singular paragraph vector models (DMC, DMM, DBOW)
and two concatenated models that combine the singular representations. DMC and DMM represent
the Distributed Memory Paragraph Vector model with concatenated or averaged paragraph vectors
and word vectors, respectively. Dai, Olah, Le suggest that DMC outperforms DMM and DBOW as
a singular PV model. They also found that while the singular Distributed Memory Paragraph Vector
model works well for most tasks, in combination with the Distributed Bag of Words Paragraph
Vector model (DBOW) it performs more consistently across many tasks. We sought to test these
predictions and experiment with these optimizations to the basic PV model.

As an additional optimization, we experimented with the training data size and concatenation of
multiple models. We split the training data into two chunks, trained each of these chunks with
the doc2vec model, and concatenated the two subsequent vectors whilst testing. This ’chunk2vec’
model was thoroughly experimental, and we therefore did not have predictions for this model’s
performance.

We chose to use the gensim python library to conduct our model training.

4 Experiments

4.1 Dataset

During the development stage, we used a small Wikipedia subset of about 171 MB representing
about 8% of all of Wikipedia. For final testing, we moved to a larger subset of Wikipedia of about
3.6 GB representing about a quarter of all of Wikipedia. The datasets were scraped of casing and
punctuation and then formatted using the gensim WikiCorpus class.

4.2 Evaluation Metric

The goal of our experiments was to compare the performance of various article vector representa-
tions. Ideally, two similar articles should have similar vector representations. To test this, we used
a triplet system as our evaluation metric. We used the publicly available hand selected triplets from
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Dai, Olah, Le. Similarity between documents was measured using cosine similarity for doc2vec,
word2vec and Hellinger distancce for LDA. The formula to determine accuracy is as follows:

accuracy = # triplets where articles 1 and 2 are more similar than articles 2 and 3
total # triplets

4.3 Baseline Models

Our baseline models included word2vec with CBOW, LDA, and Paragraph Vectors as implemented
by Le and Mikolov. Mirroring the results of Le and Mikolov’s 2014 paper, our PV outperforms
Word2Vec and LDA on our evaluation, as shown in Figure 1. Our PV implementation, also referred
to as doc2vec, did not perform as well as Le and Mikolov’s implementation; while our maximum
accuracy was 80% for our PV implementation, Le and Mikolov achieved a max accuracy of 93% in
their 2015 PV topic clustering paper.

Our degraded performance can be potentially explained by our space restraints on our GPU. Given
limited memory, we could not feasibly store multiple models, their relevant files, and the entirety of
the Wikipedia corpus on our machine at once. Le and Mikolov used the entirety of the Wikipedia
corpus to train their model, while we only used a fourth of the Wikipedia corpus. Therefore, Le and
Mikolov’s model may have captured more nuances of text, given that it ingested more training data.

Space constraints also affected the size of the vectors we could save as the requisite Docarrays
needed for gensim model construction. While we used vectors of dimension 400 to represent
Wikipedia articles, as done in Le and Mikolov’s 2014 PV paper, Dai, Olah, and Le’s 2015 paper
used paragraph vectors of dimension 10000. These larger vector representations of articles could
contribute to even more precise representations of features in documents.

Given a GPU with more ample memory to store multiple models at once for comparative purposes,
we believe we could have made further strides towards reaching Le and Mikolov’s reported accuracy
in their 2015 paper.

Figure 1: Baseline Accuracies on Big Wikipedia Subset

Figure 2: Averaged Word Vecs (word2vec) model results on Wikipedia dataset
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Figure 3: LDA model results on Wikipedia dataset

Figure 4: Basic doc2vec model results on Wikipedia dataset

4.4 Doc2Vec Concatenation Variations

In the original paragraph vector paper by Le and Mikolov, the authors suggest several variations of
paragraph vector representations, including a concatenation of multiple trained models. We built
several improvements on top of the most basic paragraph vector implementation. These models
were run with a minimum word count of 2, a feature size of 100, and a window size of 5 to 10. The
variations are as follows: instead of summing context word vectors we use the mean (DMM), instead
of summing/ averaging we concatenate context word vectors (DMC), ignore context words and force
the model to predict words randomly sampled from the paragraph (DBOW), and concatenations of
each DM model with DBOW.
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Figure 5: Performance on the Wikipedia subset

Of these, we selected one singular and one concatenated model to represent in similarity scatter
plots. It is clear from the scatter plots that the concatenated model DBOW+DMC produced more
distinct and spread paragraph vector representations for each topic. Averaging the context word
vectors in DMM allows for information loss, likely causing the drop in performance.

Figure 6: DMM model results on Wikipedia datase

Figure 7: DBOW+DMC model results on Wikipedia datase
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4.5 Doc2Vec Concatenated-Chunks Variation

As an additional variation, we split the original Wikipedia dataset into two equal-sized text files. We
trained each of these two chunks with our Doc2Vec model and concatenated the two models when
evaluating. This concatenated-chunk design achieved a 0.819767 accuracy.

Figure 8: Concatenated chunks doc2vec model results on Wikipedia datase
4.7 Analysis
Dai, Olah, and Les paper trained all models on the entire English Wikipedia database. The paper
achieved 0.849, 0.82, and 0.93 on word2vec, LDA, and doc2vec models, respectively. In compari-
son, our models trained on one-fourth of the English Wikipedia database and corresponded to Dai,
Olah, and Les relative rankings of these accuracies.

Our paragraph vector model and all subsequent optimizations outperformed the baseline models
we implemented. As seen in its graph representation, the word2vec model more tightly clusters
vectors than doc2vec. This is because word2vec focuses on individual word appearances and limited
window contexts. Doc2vec, however, incorporates n-gram-like order-sensitive collections of words
in addition to broader co-occurrences in the corpus. The clusters in the graph for the doc2vec DBOW
model are more spread out and reflect the best accuracy achieved.

Dai, Olah, Le suggest that the Distributed Memory model (DM) performs well because it remem-
bers the topic of a paragraph while learning the current context and that concatenation consistently
outperforms averaging. Our results support this finding. However, they also found that DM is con-
sistently better than DBOW, while we saw opposite results.

In the graphs above, it is worth noting that word2vec produces clusters tighter than those produced
by doc2vec. This could imply that word2vec produces vectors strongly influenced by the presence
of extremely similar–or even the same–language. doc2vec, on the other hand, produces clusters that
overlap with each other while maintaining relationships with closely related clusters (for example,
examine the close proximity between the Computing, Machine Learning, and Software clusters).
This implies that doc2vec can capture context more effectively than word2vec.

We believe that DBOW’s accuracy readings of 83% in the task of topic clustering, the best results
we achieved and results superior to those produced by Le and Mikolov’s baseline model of doc2vec,
can be potientially explained by DBOW’s sampling of random words over windows of text in a
document. Similarities between commonly used subsets of words in an article–as opposed to precise
n-gram patterns–allows for similar vector representations among two articles that pertain to similar
topics and consequently share vocabularies and word co-occurences within a window. This explains
why clustering in graphs using DBOW, such as Figure 7, is tight like that in word2vec, but still
allows for significant overlaps between topic clusters that touch upon similar content (for example,
the overlap between computing and software).
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5 Conclusion

Our results aligned with those of the paper we replicated. Paragraph Vectors outperformed in mea-
suring semantic similarity of Wikipedia articles in comparison to the LDA and Word2Vec models.
Our optimizations of Paragraph Vectors, particularly the PV-DBOW model, outperformed the tradi-
tional Paragraph Model. This improved accuracy suggests opportunities for further optimizations.

If given additional time and resources, we would experiment with testing and iterations of our hy-
perparameter values, including the minimum frequency count of words, number of features, and
number of topics on our models. We would also test our optimized doc2vec models on the entire
Wikipedia corpus and implement additional variations. Our team also strove to build an LSTM-Seq
encoder for Paragraph Vectors in an attempt to further train PV representations, though this involved
implementation proved unfeasible given the difficulty of projecting unsupervised model-building
onto a set of methods typically used for supervised learning and time constraints for this project. If
allotted more time for this project, we would continue developing our LSTM-Seq encoder. Progress
towards a LSTM-Seq remains on our GitHub repository.

This paper ultimately reinforces the Paragraph Vector model as a promising unsupervised learning
algorithm for semantic analysis of larger bodies of text.
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