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Abstract

Question answering is an important task in machine comprehension. The new
SQuAD dataset allows us to deploy recent NLP deep learning techniques and
train an end-to-end system to predict the start and end position of the answer in
the given context, instead of precisely selecting the words of the correct answer.
We propose to use combine bi-directional LSTM (BiLSTM) and context matching
to develop a model for SQuAD dataset. We first use two BiLSTMs to encode
the context and question word sequence. Then we apply context matching from
multiple perspectives to produce a matching vector. Finally another BiLSTM is
applied to the matching vector to predict the start and end positions. Several other
tricks are also explored to enhance the prediction accuracy. Experimental results
show that our model can achieve an F1 score of 61.27 and EM score of 49.50 on
the development set.

1 Introduction

The newly released Stanford Question Answering dataset (SQuUAD) [2] is a large manually labeled
dataset with over 100,000 question-answer pairs on over 500 articles. Compared to previous dataset,
SQuAD’s great capacity of both the size and diverse question-answer style enables us to develop
NLP deep learning model based on it. We referred to to implement our own model.

Our model consists of three parts: 1) the first two BiILSTMs encode the context and question word
sequence into a vector; 2) context matching from multiple perspectives produces matching vector;
3) the third BiLSTM with a Softmax loss on the matching vector predicts the start and end posi-
tions of the answer. We also examined several optimization tricks that improved the accuracy on
development set.

The following part of the paper is organized as follows: in Section [2] we describes approaches we
used, including the architecture of our deep model and the preprocessing techniques; in Section
we report the experiment result; in Section[d] we describe the observations from our experiment and
discuss the possible tricks to improve the accuracy.



2 Approach

Based on the architecture and training flow in , we implemented our own model. The architecture
of the model is illustrated in Fig. [I] The following subsections will explain each part of the training
flow in detail.
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Figure 1: Model architecture



2.1 Preprocessing

The first stage of our training is the word representation. This stage convert the every word in the
context and question into a vector with a length of d. Due to the limit of time, we only used the word
embedding instead of character-composed embedding. We used provided GloVe as the pre-trained
word embedding. For the characters not included in GloVe, we mapped them to a fixed token. The
tokenized words are then trained to be mapped to a d-dimensional vector. The mapping is initialized
randomly and will be trained during training time. We used d = 100 in this project. Other d sizes
might also work and the design space exploration will be left as future work.

2.2 Word Encoding

The converted d-dimensional word vectors from the paragraph context of length m and the question
of length n are sent into two BiLSTMs, both with hidden sizes of h. The two BiLSTMs generate
two sequence of 2h-dimensional output vectors of length n and m respectively. Note that the reason
for 2h dimension is that we concatenate the output of both directions together to aggregate the
information of both directions.

2.3 Multi-Perspective Context Matching

The encoded sequence of words will be processed by the Multi-Perspective Context Matching
(MPCM). This stage compares the embedding of the passage context with the question with multi-
perspectives.

The first kind of context matching is the Parameterized Cosine defined by Equation (T). It computes
the cosine similarity between two weighted vectors.
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Then the vectors are concatenated together after applying Pooling including max, mean etc. to form
the resulting matching vector. The computation is defined in (2)
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2.4 Aggregation and Prediction

The matching vector will be sent into another BiLSTM with the same hidden size as the first two
BiLSTMs. The goal of this stage is to aggregate the information in the matching vector from multiple
perspectives. The output of this BiILSTM will be sent into two different softmax classifiers. We
reason we only use one BiLSTM for this stage is that intuitively, most the information needed to
predicted the start and end position of the answer should be common, thus only the last softmax
classifier needs to be different. Using two different BILSTMs for predicting start and end position
is worth studying and will be left as future work.

2.5 Prediction Optimization

After getting the prediction score, we optimized the prediction at test time by adjusting prediction
result empirically. The first way we proposed is to average the predicted start position and end
position based on their prediction scores. This approach intuitively denoise the output result. The
second way we proposed is to simply set the end position to the maximum of predicted start and end
position. This approach eliminate the situation where the end position accidentally resides before
the start position. The third approach we proposed is to re-estimate the start and end position by



searching the neighborhood of predicted start and end position. This approach intuitively assumes
the correct answer is more inclined to be short. As illustrated in Fig[2] when the distance between the
predicted start and end position is too large or when the end position accidentally resides before the
start position, we introduce the a heuristics of re-estimating the start and end position by comparing
the value of the following three terms:
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Here « is an empirical coefficient. When START ; END, « is set 0 because it is impossible. For N
{15, acis set as 0.7. We did not try other values on the dev set.
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Figure 2: The example situation where re-estimation is necessary

3 Experimental Result

We developed our own model structure rather than using the provided code template. The whole
architecture uses Tensorflow [I]] as training framework. We introduced dropout to all BILSTM used
in the model. The whole model was trained for 4 epochs on one GTX 1080 GPU. The experimental
results are listed in TabldI]

Table 1: Experiment result

Exact Match (EM) F1 Score

Original paper’s 66.1 75.8
W\ o optimization 47.52 58.13
Start,End = mean(Start, End) 47.2 58.27
End=max(Start,End) 48.22 59.5
Re-estimation 49.5 61.27

As we can see, before applying prediction optimization, we can achieve EM score of 47.52% and
F1 score of 58.13% on development set. This result was obtained without using several tricks in the
original paper.



Using the heuristics of averaging start position and end position separately will improve the F1 score
a little, however, it will harm the EM score. One explanation for this phenomena is that denoising the
score will help the prediction in general but the Exact Match still relies more on the most confident
prediction.

Using the heuristics of averaging setting end position to the start position when it’s predicted to be
reside before start position can improve EM score by 0.7 and F1 score by about 1.4. This intuitively
works since it eliminated the impossible predictions.

Using the heuristics of re-estimation describe in Section [2] can improve the EM score by 2.3 and F1
score by 3.0. This result shows the assumption that the correct answer is short and setting priority
of searching in the neighborhood works well in improving prediction accuracy.

4 Observations and Discussions

4.1 The overfitting problem

8
6 ~.
) %‘_} ——
2
0
—-Train loss -=Test loss

Figure 3: The curve of train & dev loss

The training loss curve is illustrated in Figure[3] As we can see, after only 3 epochs of training, the
testing loss drops below the training loss, although we used dropout in all layers. We used several
methods trying to deal with this problem but none of them is effective, including:

e Further increase the dropout ratio from 0.2 to 0.7. However the gap between train loss and
dev loss do not seem to decrease.

e Set weight decay as Se-4. The overfitting problem is substantially alleviated, but the dev
accuracy remains the same or even a bit lower.

4.2 Predicting the length

Inspired by Faster R-CNNJ[3], we added one more feed-forward neural network to predict the log-
length of the answer in a regression manner(use L2 loss). During the testing phase, the predicted
log-length serves as a prior with Gaussian distribution. However we find F1 score is increased by a
little(less than 1%) but Exact Match score was decreased by about 5%. It implies that length-based
prediction is not accurate enough for this type of tasks.
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