
CS 224N Assignment 4: Reading Comprehension

Chiraag Sumanth
Stanford University

Jayanth Ramesh
Stanford University

Suraj Heereguppe Radhakrishna
Stanford University

{csumanth, jayanth7, hrsuraj}@stanford.edu

Abstract

Machine comprehension tests the systems ability to understand a piece of text
through a reading comprehension task. We train an end-to-end neural reading
comprehension (RC) model that is able to extract and rank a set of answer can-
didates from a given document to answer questions. Starting off with the base-
line suggested in the Assignment handout, we were able to make considerable
improvements in performance over the described baseline by exploring and com-
bining several techniques inspired from previous work relevant to Machine Com-
prehension using the Stanford Question Answering Dataset (SQuAD), in addition
to our own ideas and modifications to come up with an effective model.

1 Introduction

Natural Language Understanding (NLU) is a subtopic of natural language processing in artificial
intelligence that deals with machine reading comprehension. The process of disassembling and
parsing input is more complex than the reverse process of assembling output in natural language
generation because of the occurrence of unknown and unexpected features in the input and the need
to determine the appropriate syntactic and semantic schemes to apply to it, factors which are pre-
determined when outputting language. Reading comprehension-based question answering is the
task of answering a question with a chunk of text taken from a related document. A variety of
neural models have been proposed recently either for extracting a single entity or a single token as
an answer from a given text, or for choosing the correct answer by ranking a small set of answer
candidates. It is important to note that in both of the above setups, the answer boundary is fixed or
can very easily be determined.

1.1 Dataset

SQuAD is comprised of around 100K question-answer pairs, along with a context paragraph. The
context paragraphs were extracted from a set of articles from Wikipedia. Humans generated ques-
tions using that paragraph as a context, and selected a span from the same paragraph as the target
answer.

Context Paragraph: The idea was to create a network of wholly and partially owned channels, and
affiliates to rebroadcast the network’s programs. In 1959, this rerun activity was completed with
program syndication, with ABC Films selling programs to networks not owned by ABC. The arrival
of satellite television ended the need for ABC to hold interests in other countries; many governments
also wanted to increase their independence and strengthen legislation to limit foreign ownership of
broadcasting properties. As a result, ABC was forced to sell all of its interests in international
networks, mainly in Japan and Latin America, in the 1970s.
Question: When did ABC Films begin selling programs to other networks?
Answer: 1959

1

In the SQuAD task, answering a question is defined as predicting an answer span within a given
context paragraph. This poses a major challenge to machine comprehension systems as they have
to now identify answers in arbitrary positions, and arbitrary lengths, in a context paragraphs, which
are also of varying lengths. This significantly increase the search space complexity. For example if
n is the number of passage words, the number of possible candidates to consider is in the order of
O(n2).

1.2 Overview of Approach

We first started off implementing the baseline described in our assignment handout. This involved us
building a bidirectional LSTM encoder that took in each question and produced it’s encoded repre-
sentation, which was used to then conditionally encode the representation of the context paragraph.
We then employed a sequence-to-sequence attention mechanism to produce an attention vector over
the context paragraph representation based on the question representation, and this was multiplied
with corresponding context paragraph vector encoding. We then had an output layer that was used
to determine the start index and the end index of the answer span.

Subsequent to the successful baseline implementation as stated above, we went ahead and explored
the various techniques used by other researchers who have worked on this task (see Related Work),
and decided to build a novel, unique model by combining various ideas which we will describe in the
Model section of our report. In addition to the baseline features described above, we included a filter-
ing layer in an attempt to give more importance to relevant sections of the paragraph, even before the
encoding phase, an additional character-level encoding layer using Convolutional Neural Networks,
as well as a paragraph chunk layer in order to improve prediction accuracy. We also implemented
a modified version of sequence-to-sequence attention. We saw a considerable improvement in both
F-1 and Exact Match (EM) scores over the baseline model.

2 Related Work

The MatchLSTM paper (Wang and Jiang, 2016) [1] bears similarity with the baseline described. The
architecture is based on match-LSTM, a model they proposed previously for textual entailment, and
Pointer Net, a sequence-to-sequence model proposed by Vinyals et al.(2015) to constrain the output
tokens to be from the input sequences. The concepts of LSTM encoding and sequence-to-sequence
attention are validated through their work as effective techniques for this task.

In the paper, Multi-Perspective Context Matching for Machine Comprehension (Wang et al., 2016)
[2], they describe a Filtering layer, to filter out redundant or irrelevant information from the pas-
sage using the concept of a relevancy score for each word in the context paragraph. This has been
incorporated into our final model.

Bi-Directional Attention Flow (Seo, Kembhavi et al., 2017) [3], introduces a novel concept of com-
bining both character and word level representations using a highway network (Srivastava et. al,
2015) [7] to improve performance of Reading Comprehension Systems. We also take inspiration
from their work in our model.

We also adopted techniques from the work of Yu et al., 2016 [4] in End-to-End Answer Chunk
Extraction and Ranking for Reading Comprehension, where they applied a novel word-by-word
attention mechanism to acquire question-aware representations for the paragraph, followed by the
generation of chunk representations and a ranking module to propose the top-ranked chunk as the
answer.

All these models clearly outperformed the Logistic Regression model proposed by Rajpurkar et
al., 2016 [5] and have obtained close to state-of-the-art performance on the SQuAD dataset, and
we imagined using a mix of techniques as described above in our model would serve us well in
improving over the baseline model we first implemented.

3 Methods and Models

In this section we will describe the various models we implemented in this assignment, finally
culminating in our model as described in section 3.2.

2

3.1 Baselines

Three different models were explored as part of training the baseline model, each of which have
been described briefly.

3.1.1 Baseline 1: Feed-Forward Neural Network

All possible windows with a fixed possible maximum length were generated from a given context
paragraph in the training data. The sum of the word vectors corresponding to the words in the gener-
ated windows were used as input to the neural network. A similar procedure was employed to obtain
the question representation. The input to the first layer of the network were the question representa-
tion and the vector representation of a particular window of the context paragraph. The second layer
was fed the same question representation and the hidden layer output of the first layer. The final
layer of the network output the softmax probability that the given window is the answer to the ques-
tion. After getting the probabilities for each such window, the window with the highest probability
was selected to be the final prediction for the training example. Cross-entropy loss was used to train
the model, with one-hot vector representation of the candidate windows as the ground truth. The
index corresponding to the correct window was marked with one while all other indices were zero.
This model reported F1 scores of 4.61% with corresponding EM scores of 3.54%.

3.1.2 Baseline 2: Recurrent Neural Network

Next, a simple RNN was implemented with a naive form of attention. The inputs to the RNN
at every time step were: 1) Vector representation of the question, 2) Vector representation of
the current context word, and 3) The hidden layer vector output from the previous time step.
The question vector was fed at every time step in order to simulate a person looking for the
answer in a paragraph while keeping the question in mind constantly. The model was made
to output two probabilities for every context word: 1) The probability that the current word
is the starting word of the answer window, and 2) The probability that the current word is
the ending word of the answer window. The loss was decomposed as the sum of two cross-
entropy losses, one for predicting the starting word and the other for predicting the ending word.
This model reported F1 scores of 7.95% and EM scores of 5.38%, a small improvement over the
simple feed-forward neural network.

3.1.3 Baseline 3: Bidirectional Long-Short-Term-Memory

The third and final model we explored for the baseline was a BiLSTM. The question represen-
tation was arrived at by running a BiLSTM over the question and concatenating the two hid-
den vectors. A hidden state representation of the context paragraph was also evaluated by run-
ning a BiLSTM over it and concatenating the two resulting hidden state vectors. The attention
vector was calculated as described in the work of Wang and Jiang, 2016 [1]. A final LSTM
was run over the fused representation of the question and context paragraph to predict the prob-
abilities that each word in the context paragraph is the starting and ending word in the answer.
This model reported scores of 35.87% and EM scores of 26.46%, a leap in results over the two
previously implemented baseline models.

3.2 Final Submission Model

Figure 1 depicts the architecture of our final submission model. It is comprised of the following
layers.

Word Embedding Layer (with Filtering): The Word embedding layer to map each word to a
high-dimensional vector space. We use pre-trained word vectors, GloVe (Pennington et al., 2014)
[8], with each word vector having a dimension of 100. Additionally, upon studying the dataset, it
is clear that there are a large number of examples, the relevant parts to answer the given question
is contained in a relatively small part of the context paragraph. Therefore this layer helps filter out
redundant or irrelevant information from the context paragraph, and allows more importance to be
given to the more relevant words in the paragraph, with respect to the given question. We implement
it in a way as described by Wang et al., 2016 [1]. We compute a relevancy score rij between every
word pj in the context paragraph and every word qi of the given question using the cosine similarity

3

Figure 1: Overview of the architecture of the final model

measure: rij = qi.pj
||qi||∗||pj|| . The relevancy degree rj = maxirij. Finally we perform the transformation

p’j = rj.pj, and pass p’j to the next layer.

Character Embedding Layer: We adopt the technique described in BiDAF (Seo, Kembhavi et al.,
2017) [3] to map each word to a vector space using character-level CNNs. In this approach, we train
a simple CNN with one layer of convolution on top of the GloVe word vectors, backpropogating
through the vectors, and then use max-pooling at the output layer of the CNN to get the character
level embedding vector for that word.

Highway Network: Subsequently, we concatenate the character and word embedding vectors and
pass it to a two-layered Highway Network (Srivastava et al., 2015) [7]. The outputs of the Highway
Network are two matrices, Qd x m, representing the every token of the question as a d-dimensional
vector, and Pd x n, representing every token the context paragraph as a d-dimensional vector. Adopt-
ing Highway Networks allows us to train increasingly layered neural networks optimized directly
with Stochastic Gradient Descent by smmothening gradient flow across the various layers, duly
noted by the authors of the BiDAF paper.

Contextual Embedding Layer: This layer is seen in almost every paper relevant to Machine Com-
prehension. It serves the purpose of encoding contextual information into the hidden representation
of every token in the question, as well as paragraph. The paragraph is in fact, encoded conditionally
with respect to the question representation. As standard we used a Bi-Directional LSTM for this
purpose and the final representation of the question and context paragraph is the concatenation of
the LSTM outputs in the two directions. Therefore we get two matrices, Hq

2d x m from matrix Q,
and Hp

2d x n, from matrix P.

Attention Layer: This layer is inspired by the work of Yu et al., 2016, that proposes a novel,
simplified word-to-word attention mechanism leading to a joint Paragraph-Question representation.
For every vector hk

q in Hq, and hj
p in in Hp, we compute the dot product αjk = hpj · h

q
k. Then

we compute a weighted pooling vector across all the tokens in the question, as βj = Σm
k αjkh

p
j .

Thus we now have a 2d-dimensional vector βj and concatenate it with hpj to get a 4d-dimensional
vector cj which is the joint paragraph-question representation vector for every token j in the context

4

paragraph. We then pass cj to a Bi-Directional GRU to get a d-dimensional vector in each direction,
and finally concatenate the two into a 2d-dimensional vector γj = [~γj , ~γj]

Chunker and Output Layer: In this layer we first construct candidate answer chunks, i.e., starting
from a given pj in the paragraph, we construct all possible answer chunks up-to a maximum chunk
length U (which we determined as 1.2 times the longest answer span in the training data times, in
lieu of slightly longer possible answer spans in unseen data). As noted in Yu et al., 2016 [4], the
chunk representation smn [spanning from tokens m through n] is best represented as a concatenation
of the hidden state of the first word in a chunk in the forward GRU and that of the last word in the
backward GRU, i.e smn = [~γm, ~γn]. We then choose the chunk smn that maximizes the probability
Pr(Amn | P,Q), given a question Q, and context paragraph P, where Amn is the answer constructed
from the corresponding tokens in the chunk smn. The start and end indices astart and aend are thus
determined, based on the start and end indices of the most optimal chunk.

Comment about indices: It is interesting to note here that this chunking technique to determine the
best answer, and subsequently determining the start and end indices of that predicted answer ensures
that the start index is always lesser than or equal to that of the end index, avoiding a common problem
seen in cases where two separate predictions are made, one each for the start index and end index,
that may lead to the end index being predicted as something that is lesser than the start index.

4 Results and Discussions

4.1 Results:

Table 1 summarizes our results for the various models described above, and also includes layer
ablation effects.

Model Train F1 Test F1 Train EM Test EM
Feed-Forward Neural Network 5.24% 4.61% 4.81% 3.54%

Without masking 3.47% 2.86% 2.26% 1.47%
Without dropout 5.33% 4.47% 4.98% 3.35%

Without regularization 5.27% 4.56% 4.85% 3.48%
Recurrent Neural Network 8.13% 7.95% 6.02% 5.38%

Without masking 3.94% 3.46% 4.35% 3.51%
Without dropout 8.22% 7.76% 6.08% 5.19%

Without regularization 8.19% 7.91% 6.10% 5.31%
Bidirectional Long-Short-Term-Memory 38.76% 35.87% 29.15% 26.46%

Without masking 28.64% 27.36% 19.86% 17.17%
Without dropout 36.12% 34.52% 28.17% 24.73%

Without regularization 36.91% 34.85% 28.43% 24.89%
Final Submission Model 61.15% 55.95% 45.84% 43.60%

Without character embedding 60.86% 55.31% 44.27% 43.53%
Without filtering 57.74% 53.08% 42.46% 41.83%

Without chunking 54.57% 50.42% 40.15% 39.87%

Table 1: Overview of the architecture of the final model

During layer ablation, it can be seen that character embeddings indeed help towards better model
performance on the test set. This maybe attributed to the fact help better encode out-of-vocabulary
words unseen during training, as opposed to just using word embeddings. Filtering is also of con-
siderable value addition in helping the downstream attention layer by initially weighing down less
relevant parts of the paragraph tokens. A major contributor to our model architecture is the chunking
layer. We feel this immensely helps the model make better predictions as it sees smaller localized
chunks of the paragraph as opposed to making direct start/end index predictions over the entire para-
graph length. Additionally, as noted in the comment about indices in section 3.2, this layer helps
alleviate the problem of index ordering.

5

Figure 2: Train and Test loss vs Number of epochs

Model Hyper-parameters: Hyper parameter search via evaluation on the validation set led us to
the following configuration. For the character level CNN, we used 100 1D filters each of width =
3, coupled with max pooling. Both GRU ans LSTM had a hidden state dimension d = 200, and
we used dropout with keep probability as 0.8 in all our neural network layers. We used the Adam
Optimizer with learning rate of 0.01, batch-size of 32, and trained for 10 epochs where we observed
convergence, as observed in Figure 2. We also used d = 100 for GloVE vectors trained on the 6B
Wiki dataset. In future, we hope to explore with word embeddings of a larger dimension, trained on
a bigger corpus to improve model performance.

(a) Figure 3a: F1 scores v word count of paragraphs (b) Figure 3b: Final Model (green) vs Baseline (blue)

The final model was evaluated on its F1 scores as a function of the number of words in a context
paragraph. The results are presented in Figure 3a. Two hundred random training examples were
chosen for this analysis. As seen, there is no significant performance degradation as the length of
a paragraph increases. This proves that the model is able to focus on short sections of relevant text
even in a long document.

Figure 3b visually depicts how our final model performs when compared to the Bi-LSTM baseline
in terms of the number of questions in the dev set correctly answered by our model (shown in blue),
when compared to the baseline (shown in green).

4.2 Discussion and Error Analysis

Observation of the performance of the models shows that masking is very important in achieving
good results. As we see from Figure 4, most paragraphs have word counts within 300. However,
while training all our models, we have padded our training examples to the maximum length of a
paragraph in the entire training set, which is 766. Hence, while predicting without masking, the
model will tend to predict indices more than 300 with a higher probability. For all training examples
whose length of the context paragraph is less than 300, these are invalid predictions. However, with

6

masking the model is forced to predict an index that falls in the range of the length of a given context
paragraph, i.e. a training example. Hence, masking is critical to the performance of a model.

None of the models showed high tendency to overfit the training data. Dropout and regularization
only help in cases where a model overfits the training data and performs poorly on the test set.
Since the model generalizes fairly well over the test set, dropout and regularization contribute little
in helping increase the performance of the model over the test set. This is reflected well in the
performance of the models, which is documented in the Table 1.

Figure 4: Plot of the number of paragraphs vs. Respective word counts

Figure 5 represents the percentage of questions answered correctly by our model versus the Bi-
LSTM baseline, across different classes of questions such as Why, What, etc. We can see that
models seem to consistently perform relatively poorly on the Why class of questions, and better on
the When class of questions, which are perhaps typically just time or date-like facts, as opposed to
more complex answers for the Why class.

Figure 5: Percentage of questions answered correctly across different question types

7

Table 2 below lists samples we chose to capture the different types of errors our model makes.

Error Category Example
Non-exact answer boundary Question: The Amazon rainforest makes up what

amount of Earth’s rainforests?
Context: The Amazon represents over half of the
planet’s remaining rainforests, and comprises the
largest and most biodiverse tract of tropical rain-
forest in the world, with an estimated 390 billion
individual trees divided into 16,000 species.
Prediction: half
Ground truth: over half

Ambiguities and subtle semantic differences Question: What color was used to emphasize the
50th anniversary of the Super Bowl?
Context: As this was the 50th Super Bowl, the
league emphasized the ”golden anniversary” with
various gold-themed initiatives
Prediction: golden
Ground truth: gold

Answer spanning multiple phrases Question: What three things did the Windows Ev-
erywhere campaign emphasize on ?
Context: Microsoft premiered the first ad in its
”Windows Everywhere” campaign , which pro-
moted Windows 8 , Windows Phone 8 , and the
company ’s suite of online services as an intercon-
nected platform .
Prediction: promoted Windows 8
Ground truth: Windows 8 , Windows Phone 8 ,
and the company ’s suite of online services

Incorrect tokenization Question: How many jobs in 2008 in Greece were
somehow related to the tourism industry ?
Context: The number of jobs directly or indirectly
related to the tourism sector were 840,000 in 2008
and represented 19% of the country’s total labor
force .
Prediction: 840,
Ground truth: 840,000

External knowledge [In this specific example,
unable to differentiate between major and non-
major cities.]

Question: What is the major US city that the is
the university located?

Context: with campuses throughout the Boston
metropolitan area: its 209-acre (85 ha) main cam-
pus is centered on Harvard Yard in Cambridge, ap-
proximately 3 miles (5 km) northwest of Boston.
Prediction: Cambridge
Ground truth: Boston

Table 2: Error Analysis Table

5 Conclusion and Future Work

In this project, we tackled a fairly difficult problem of machine comprehension. The problem is diffi-
cult because the answer to the question can be any contiguous chunk of the paragraph, which means
that the number of possible answers and the number of words in an answer are variable. We pre-
sented various techniques, and our final model is a unique combination of our own ideas, in addition
to exploring ideas inspired from previous literature. We were able to obtain significant improve-
ment over the baseline model, and believe that given more time, we can iron out inefficiencies and
undiscovered nuances in our implementation and considerably improve on our current performance.

8

In future we would be exploring different attention mechanisms above and beyond traditional
sequence-to-sequence ones. We would also like to research more on alternative approaches to data-
flow and representation fusion like fine-grained gating [6].

References

[1] Wang, Shuohang, and Jing Jiang. ”Machine comprehension using match-lstm and answer
pointer.” arXiv preprint arXiv:1608.07905 (2016).

[2] Wang, Zhiguo, et al. ”Multi-Perspective Context Matching for Machine Comprehension.”
arXiv preprint arXiv:1612.04211 (2016).

[3] Seo, Minjoon, et al. ”Bidirectional Attention Flow for Machine Comprehension.” arXiv
preprint arXiv:1611.01603 (2016).

[4] Yu, Yang, et al. ”End-to-End Answer Chunk Extraction and Ranking for Reading Comprehen-
sion.” arXiv preprint arXiv:1610.09996 (2016).

[5] Rajpurkar, Pranav, et al. ”Squad: 100,000+ questions for machine comprehension of text.”
arXiv preprint arXiv:1606.05250 (2016).

[6] Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, Ruslan Salakhutdinov.
”Words or Characters? Fine-Grained Gating for Reading Comprehension.”

[7] Srivastava, Rupesh Kumar, Klaus Greff, and Jrgen Schmidhuber. ”Highway networks.” arXiv
preprint arXiv:1505.00387 (2015).

[8] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. ”Glove: Global Vectors for
Word Representation.” EMNLP. Vol. 14. 2014.

9

	Introduction
	Dataset
	Overview of Approach

	Related Work
	Methods and Models
	Baselines
	Baseline 1: Feed-Forward Neural Network
	Baseline 2: Recurrent Neural Network
	Baseline 3: Bidirectional Long-Short-Term-Memory

	Final Submission Model

	Results and Discussions
	Results:
	Discussion and Error Analysis

	Conclusion and Future Work

