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Abstract

For the Assignment 4 of CS 224n course, we did a reimplementation of the Bi-
Directional attention flow model (BiDAF). We built the architecture from scratch,
tuned the network and tried different regularization and out-of-vocabulary han-
dling strategies. Eventually, we are able to get F1 score 76.5 and EM 66.3 on test
set with our ensemble model of five single models.

1 Introduction

Machine Comprehension(MC) is a special task of Question Answering(QA), where the machine
is given a query about a given context and is required to predict the answer. Such problems gain
significant popularity over the years not only because of their vast applications, but also theoretical
values for language and neural network research. To solve this problem, usually some attention
mechanism is adopted to focus on only a small portion of the context. This task also requires
modeling of the interaction between query and context. To motivate this line of research, Stanford
NLP group released the SQuAD[1] dataset, which consists of 100K question-answer pairs, along
with a context paragraph for each pair. There is also a public leader board available. The state of
the art is already very competitive, as there are many methods that are approaching human level
performance.

The rest of the paper is organized as following: Section 2 defines the problem; Section 3 introduces
our method and changes to original BiDAF model. We also introduces our tricks and practices
for improving performance; In section 4 we analyze both quantitative and qualitative results and
different types of error. We also analyze the effectiveness of attention mechanism by visualizing the
attention matrices. Finally in section 5, we discussed the experiences we learned from this project
and future direction.

2 Problem Definition

Same as the evaluation criterion of the leader board, we define our problem as the following:

Given word sequence of context with length T , p = {p1, p2, ..., pT } and question with length J ,
q = {q1, q2, ..., qJ}, the model needs to learn a function f : (p,q) → {as, ae}, with the condition
1 ≤ as ≤ ae ≤ T . {as, ae} is a pair of scalar indices pointing to the start position and end position
respectively in the context p, indicating the answer to the question q.
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3 Model

In this section, we first present the incrementally development of our deep neural network archi-
tecture, from baseline to the final model. We then introduce the additional training and fine-tuning
strategies for performance boosting.

3.1 Architecture

Starting from the plain code framework provided in the Assignment 4 of CS224n: Natural Language
Processing with Deep Learning (2016-2017 Winter Quarter) , we built the simple and straight for-
ward baseline model with a Bi-Directional LSTM contextual layer, a context-to-query attention
layer, a modeling layer and a output layer.

The contextual layer encodes the embedded sequences of context p̃ = {p̃1, p̃2, ..., p̃T } and question
q̃ = {q̃1, q̃2, ..., q̃J} respectively using Bi-Directional LSTM with independent parameters. We
get the representation matrix of context words H ∈ RT×2d and question words U ∈ RJ×2d,
where d is equal to the size of embedding. The attention layer is the vanilla version: similarity
matrix S = Ht:U

T
j:, attention vectors at = softmax(St:) ∈ RJ and attended question vectors

Ũt: =
∑

j atjUj: ∈ RT×2d. Then the attended question matrix Ũt: is sent to the modeling and
output layer to predict the start and end indices. This process contains two Bi-Direction LSTM
layers and the final logistic regression with softmax. Logits was post-processed with padding masks.
Cross-entropy loss is used for training. The F1 score of this baseline model on dev set was around
50.
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Quantitative Results

F1 
Score

EM F1 
Score

EM

Dev set Test set
BiDAF(our 
implementation, 
single)

72.1 61.0 - -

BiDAF(our 
implementation, 
ensemble)

75.8 65.3 76.5 66.3

BiDAF(reference 
implementation, 
single model)

77.3 67.7 77.3 68.0

BiDAF(reference 
implementation, 
ensemble)

80.7 72.6 81.1 73.3

MPCM[3] - - 75.1 65.5

Dynamic 
Coattention

- - 75.9 66.2

r-net - - 77.9 69.5

The part marked in blue is our implementation, 
we achieved F1 score 75.8 and EM 65.3 on dev 
set, and F1 score 76.5 and EM 66.3 on test set. 

From the results we can se that the 
performance is comparable to state of the art 
machine comprehension methods. The 
performance gap with reference implementation 
of BiDAF can be explained by lack of character 
level embeddings.

Method
Baseline:  
Contextual layer and Q2C attention layers. 

Incrementally development with 
components of BiDAF[2]: 
• Embedding layer: word embeddings only, 

which are fed into contextual layers 
without highway network 

• Attention layer: of both Context2Query 
and Query2Context attention. 

• Modeling layer: two layers of Bi-
directional LSTM, same as BiDAF.  

• Output layers: used W1M1 and W2M2, 
instead of using W1[G, M1], W2[G, M2] as 
logit before softmax. No Bi-directional 
LSTM between start and end prediction.  

Additional skills for performance boosting: 
• Analyzed the overfitting issue of BiDAF 

model and the effect of dropout and 
weight decay.  

• Tuned the model with different OOV(out of 
vocabulary) strategy and got different 
results. Fig 1. Architecture of our model

Fig 2. Distribution of ground truth 
answer length and predicted answer length

Background
• Question Answering (QA) with 

provide context for Machine 
Comprehension (MC) 

• End-to-end deep neural network 
with bi-directional attention flow 

1. Imprecise answer boundaries 
In most of the incorrect cases, the model gives a 
inaccurate position around the boundries. 2-3 words 
around the answer span may be mistakenly omitted or 
included.


Context: Rugby is also a growing sport in southern 
California, particularly at the high school level, with 
increasing numbers of schools adding rugby as an 
official school sport.

Question: At which level of education is this sport 
becoming more popular?

Prediction: 'high school level'

Answer: ['high school', 'high school', 'high school']


2. Long tail of predicted answers 
By comparing the distribution of answer length (Fig.2), we find that our model tends to give a longer answer 
than ground-truth. Often times it's able to correctly predict the starting position but has a long tail of many 
irrelavent words. This shows that the model may not learned that short and concise answers are preferred in 
this case.


Context: The Panthers used the San Jose State practice facility and stayed at the San Jose Marriott. The 
Broncos practiced at Stanford University and stayed at the Santa Clara Marriott.

Question: Where was the practice place the Panthers used for the Super Bowl?

Prediction: 'San Jose State practice facility and stayed at the San Jose Marriott'

Answer: ['San Jose', 'the San Jose State practice facility', 'San Jose State']


Problem Statement
Dataset: SQuAD[1],100K question-
answer pairs, along with a context 
paragraph  

Problem:  
Given word sequence of context with 
length m, p = {p1, p2, …, pm} and 
question with length n, q = {q1, q2, …, 
qn}, the model needs to learn a 
function f: (p, q) → {as, ae}, where the 
answer is a pair of scalar indices 
pointing the start position (as) and end 
position (ae) of the answer to the 
question q in context p. 

Table 1. Performance comparison with 
other methods

Training Strategy

Fig 3. EM performance with and without dropout

Fig 4. F1 performance with and without dropout
This section is about hyper-parameter tuning and tricks to speed up 
training. 
• Padding Strategy: We sort all the contexts by length and randomly 

sample a batch size window. We then pad each batch of the context 
to its longest length. Each epoch takes 30min and we usually train 
5-7 epochs for a single model.  

• Optimizer: We used Adam optimizer with initial learning rate 0.048.  
• Weight Decay Rate: We use a weight decay rate of 0.9999.  
• Dropout rate: As in Fig 3 and Fig 4, even with weight decay, the 

model overfits quickly. So we applied a dropout to input gate of all 
LSTM cells with dropout rate 0.8.

F1 EM

OOV set to glove/random 72.2 61.22

OOV set to random 71.9 60.8

OOV set to zero 71.2 60.2

No OOV handling 63.1 48.9

Table 2. Performance comparison with different OOV handling

• OOV handling: OOV handling is important as test time. We use 
different OOV handling methods: 1)set embeddings of OOV to 
zeros. 2) set embeddings of OOV to a random vector, 3) set 
embeddings of OOV to glove embedding, if not in glove, set to 
random. The results can be found in Table 2. 

Figure 1: Architecture of our model
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Our incremental development of baseline was guided by the BiDAF method [2]. We open source
our implementation on Github after the course leader board competition1.

Embedding layer: Increasing our word embedding size from 100 to 200 does not provide any
contribution to the performance of our model. So we finalized the embedding size to 100. Besides,
we skipped the hard-training word characters encoding process which is popular used in state-of-
the-art models.

Attention layer: Firstly, padding masks were added to the similarity matrix in the attention
layer. Query-to-context attention was also added with the result of attended context vectors:
H̃t: =

∑
t a

q
jtHt: ∈ RJ×2d, where aq = softmax(maxdimension St:) ∈ RT . Moreover, we

embraced more complex similarity function, S = w[Ht:;Uj:;Ht: ◦Uj:]. This single modification
of similarity matrix added around 2 points for our F1 score.

Modeling layer: We still used two layers of Bi-Directional LSTM, which is the same as BiDAF[2].
M1 and M2 represent the outputs of these two layers respectively.

Output layers: We just used WM2 as logits before softmax, instead of the complex format used
in BiDAF[2]. We also skipped the additional Bi-Directional LSTM between start and end indices
prediction.
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Figure 2: Example of start and end logits

Dynamic Programming: After getting the logits for start and end positions, we use dynamic pro-
gramming strategies for the final prediction. In the baseline model, answer span (s, e) was selected
with independent maximum probability ps, pe. As is shown in Figure 2, there might be multiple
peaks of probabilities that are close to each other. Since the end position never lies before the start
position, we should never choose an end position where start logits before are low. Therefore, we
select (s, e) where s ≤ e with the maximum value of p1sp

2
e, which can be calculated in linear time

using dynamic programming. In this way, we are able to select legal answer spans where the joint
probability of start and end are the highest. After using this DP strategy, the F1 score was improved
by 2 points. Since most the answers are short and lie in one sentence, we then introduced a sentence-
level DP to find the maximum p1sp

2
e where s and e are in same sentence. This improvement boosted

the F1 score by another 0.5 point.

3.2 Training details

This sub-section is about hyper-parameter tuning and tricks to speed up training.

Padding Strategy: To deal with the sequence length differences of data in the same batch sent to
the model, in the baseline method, each sequence was padded to the maximum length in the whole
dataset, which is 766 and 60 for context and question respectively. The large proportion of redundant
computation brought single epoch training over 3 hours runtime on the baseline model. To reduce

1https://github.com/yolandawww/QASystem
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Question: At which level of education is this sport 
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By comparing the distribution of answer length (Fig.2), we find that our model tends to give a longer answer 
than ground-truth. Often times it's able to correctly predict the starting position but has a long tail of many 
irrelavent words. This shows that the model may not learned that short and concise answers are preferred in 
this case.
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Problem:  
Given word sequence of context with 
length m, p = {p1, p2, …, pm} and 
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Table 1. Performance comparison with 
other methods

Training Strategy

Fig 3. EM performance with and without dropout

Fig 4. F1 performance with and without dropout
This section is about hyper-parameter tuning and tricks to speed up 
training. 
• Padding Strategy: We sort all the contexts by length and randomly 

sample a batch size window. We then pad each batch of the context 
to its longest length. Each epoch takes 30min and we usually train 
5-7 epochs for a single model.  

• Optimizer: We used Adam optimizer with initial learning rate 0.048.  
• Weight Decay Rate: We use a weight decay rate of 0.9999.  
• Dropout rate: As in Fig 3 and Fig 4, even with weight decay, the 

model overfits quickly. So we applied a dropout to input gate of all 
LSTM cells with dropout rate 0.8.

F1 EM

OOV set to glove/random 72.2 61.22

OOV set to random 71.9 60.8

OOV set to zero 71.2 60.2

No OOV handling 63.1 48.9

Table 2. Performance comparison with different OOV handling

• OOV handling: OOV handling is important as test time. We use 
different OOV handling methods: 1)set embeddings of OOV to 
zeros. 2) set embeddings of OOV to a random vector, 3) set 
embeddings of OOV to glove embedding, if not in glove, set to 
random. The results can be found in Table 2. 

Figure 3: EM performance with and without dropout
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• Padding Strategy: We sort all the contexts by length and randomly 
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to its longest length. Each epoch takes 30min and we usually train 
5-7 epochs for a single model.  

• Optimizer: We used Adam optimizer with initial learning rate 0.048.  
• Weight Decay Rate: We use a weight decay rate of 0.9999.  
• Dropout rate: As in Fig 3 and Fig 4, even with weight decay, the 

model overfits quickly. So we applied a dropout to input gate of all 
LSTM cells with dropout rate 0.8.

F1 EM

OOV set to glove/random 72.2 61.22

OOV set to random 71.9 60.8

OOV set to zero 71.2 60.2

No OOV handling 63.1 48.9

Table 2. Performance comparison with different OOV handling

• OOV handling: OOV handling is important as test time. We use 
different OOV handling methods: 1)set embeddings of OOV to 
zeros. 2) set embeddings of OOV to a random vector, 3) set 
embeddings of OOV to glove embedding, if not in glove, set to 
random. The results can be found in Table 2. 

Figure 4: F1 performance with and without dropout

the redundancy, we sorted the training set by sequence lengths and then get each of our data batch
randomly from a randomly chosen window in the sorted training set. The size of window is three
times of the batch size. Then the input data are padded to the maximum length in the batch rather
than the whole dataset. This trick fastened our training process by 3 times.

Optimizer: We used Adam optimizer with initial learning rate 0.048.

Avoid overfitting: We use a weight decay and dropout to avoid overfitting. The weight decay rate
used is 0.9999. As in Fig 3 and Fig 4, even with weight decay, the model overfits quickly. So we
applied a dropout to the input gate of all LSTM cells with dropout rate 0.8. Still, we are suffering
over 10 points F1 score gap between training and validation set.

OOV(out of vocabulary) handling: OOV handling is important at test time. We use different OOV
handling methods: 1) set embeddings of OOV to zeros. 2) set embeddings of OOV to a random
vector, 3) set embeddings of OOV to glove embedding, if not in glove, set to random. The results
can be found in Table 1.
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Table 1: Performance comparison with different OOV handling

Model F1 Score EM
OOV set to glove/random 72.2 61.22
OOV set to random 71.9 60.8
OOV set to zero 71.2 60.2

Table 2: Performance comparison with other methods

F1 Score EM F1 Score EM
Model Dev set Test set
BiDAF(our implementation, single) 72.1 61.0 - -
BiDAF(our implementation, ensem-
ble)

75.8 65.3 76.5 66.3

BiDAF[2](reference implementa-
tion, single model)

77.3 67.7 77.3 68.0

BiDAF(reference implementation,
ensemble)

80.7 72.6 81.1 73.3

MPCM[3] - - 75.1 65.5
Dynamic Coattention - - 75.9 66.2
r-net - - 77.9 69.5

4 Results and Analysis

We achieved F1 score 75.8 and EM 65.3 on dev set, and F1 score 76.5 and EM 66.3 on test set. A
detailed comparison with state-of-the-art models can be found in Table2. From the results, we can
see that the performance is comparable to state of the art machine comprehension methods. The
performance gap with the reference implementation of BiDAF can be explained by lack of character
level embeddings.

4.1 Error Analysis

We analyze the error cases in ’dev-v1.1.json’ where our model achieves less than 80% F1. We find
out that there are 4 major problems with our model.

4.1.1 Imprecise answer boundaries

In most of the incorrect cases, our model gives an inaccurate position around the boundaries. 2-3
words around the answer span may be mistakenly omitted or included. It may be very hard to get
rid of these mistakes completely.

Example:

• Context: Rugby is also a growing sport in southern California, particularly at the high
school level, with increasing numbers of schools adding rugby as an official school sport.

• Question: At which level of education is this sport becoming more popular?

• Prediction: ’high school level’

• Answer: [’high school’, ’high school’, ’high school’]
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• Attention layer: of both Context2Query 
and Query2Context attention. 

• Modeling layer: two layers of Bi-
directional LSTM, same as BiDAF.  

• Output layers: used W1M1 and W2M2, 
instead of using W1[G, M1], W2[G, M2] as 
logit before softmax. No Bi-directional 
LSTM between start and end prediction.  

Additional skills for performance boosting: 
• Analyzed the overfitting issue of BiDAF 

model and the effect of dropout and 
weight decay.  

• Tuned the model with different OOV(out of 
vocabulary) strategy and got different 
results. Fig 1. Architecture of our model

Fig 2. Distribution of ground truth 
answer length and predicted answer length

Background
• Question Answering (QA) with 

provide context for Machine 
Comprehension (MC) 

• End-to-end deep neural network 
with bi-directional attention flow 

1. Imprecise answer boundaries 
In most of the incorrect cases, the model gives a 
inaccurate position around the boundries. 2-3 words 
around the answer span may be mistakenly omitted or 
included.


Context: Rugby is also a growing sport in southern 
California, particularly at the high school level, with 
increasing numbers of schools adding rugby as an 
official school sport.

Question: At which level of education is this sport 
becoming more popular?

Prediction: 'high school level'

Answer: ['high school', 'high school', 'high school']


2. Long tail of predicted answers 
By comparing the distribution of answer length (Fig.2), we find that our model tends to give a longer answer 
than ground-truth. Often times it's able to correctly predict the starting position but has a long tail of many 
irrelavent words. This shows that the model may not learned that short and concise answers are preferred in 
this case.


Context: The Panthers used the San Jose State practice facility and stayed at the San Jose Marriott. The 
Broncos practiced at Stanford University and stayed at the Santa Clara Marriott.

Question: Where was the practice place the Panthers used for the Super Bowl?

Prediction: 'San Jose State practice facility and stayed at the San Jose Marriott'

Answer: ['San Jose', 'the San Jose State practice facility', 'San Jose State']


Problem Statement
Dataset: SQuAD[1],100K question-
answer pairs, along with a context 
paragraph  

Problem:  
Given word sequence of context with 
length m, p = {p1, p2, …, pm} and 
question with length n, q = {q1, q2, …, 
qn}, the model needs to learn a 
function f: (p, q) → {as, ae}, where the 
answer is a pair of scalar indices 
pointing the start position (as) and end 
position (ae) of the answer to the 
question q in context p. 

Table 1. Performance comparison with 
other methods

Training Strategy

Fig 3. EM performance with and without dropout

Fig 4. F1 performance with and without dropout
This section is about hyper-parameter tuning and tricks to speed up 
training. 
• Padding Strategy: We sort all the contexts by length and randomly 

sample a batch size window. We then pad each batch of the context 
to its longest length. Each epoch takes 30min and we usually train 
5-7 epochs for a single model.  

• Optimizer: We used Adam optimizer with initial learning rate 0.048.  
• Weight Decay Rate: We use a weight decay rate of 0.9999.  
• Dropout rate: As in Fig 3 and Fig 4, even with weight decay, the 

model overfits quickly. So we applied a dropout to input gate of all 
LSTM cells with dropout rate 0.8.

F1 EM

OOV set to glove/random 72.2 61.22

OOV set to random 71.9 60.8

OOV set to zero 71.2 60.2

No OOV handling 63.1 48.9

Table 2. Performance comparison with different OOV handling

• OOV handling: OOV handling is important as test time. We use 
different OOV handling methods: 1)set embeddings of OOV to 
zeros. 2) set embeddings of OOV to a random vector, 3) set 
embeddings of OOV to glove embedding, if not in glove, set to 
random. The results can be found in Table 2. 

Figure 5: Distribution of ground truth answer length and predicted answer length

4.1.2 Long tail of predicted answers

By comparing the distribution of answer length (Figure 5), we find that our model tends to give a
longer answer than ground-truth. Often times it’s able to correctly predict the starting position but
has a long tail of many redundant words.

Example:

• Context: The Panthers used the San Jose State practice facility and stayed at the San
Jose Marriott. The Broncos practiced at Stanford University and stayed at the Santa Clara
Marriott.

• Question: Where was the practice place the Panthers used for the Super Bowl?
• Prediction: ’San Jose State practice facility and stayed at the San Jose Marriott’
• Answer: [’San Jose’, ’the San Jose State practice facility’, ’San Jose State’]

In those cases, although the model can pay attention to the correct starting position. It doesn’t know
where to stop. Since most answers are short and concise in the SQuAD dataset, so this problem
may greatly impair our performance. This problem may due to the lack of interaction between the
prediction of begin and end positions. We’ve tried different strategies to alleviate this problem,
including the sentence-level dynamic programming mentioned previously. But the problem still
exists after those improvements. We think that it may be beneficial to add an additional LSTM layer
for the end position prediction.

4.1.3 Wrong position of attention

Sometimes the model is paying attention to the wrong region of the context and missing the real
answer completely.

Example:

• Context: The Panthers used the San Jose State practice facility and stayed at the San
Jose Marriott. The Broncos practiced at Stanford University and stayed at the Santa Clara
Marriott.

• Question:At what university’s facility did the Panthers practice?
• Prediction: Stanford University
• Answer: [’San Jose State’, ’San Jose State’, ’San Jose State’]

In the above example, the model mistakenly focuses on ’Stanford University’ because of the word
’practiced’. The real answer ’San Jose State’ is also associated with ’practice’ but the model failed
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to capture the word ’facility’ in the context to distinguish it from the fake answer. The attention
layer of our model is not strong enough to capture complex interactions between context and query.
Since our model only used one layer of attention in two directions, we think that it may be helpful of
adding deeper layers to recursively compute query-to-context and context-to-query attention. Intu-
itively, this will allow attention signals to flow through different regions with further comprehensive
understandings so that the model can make multi-step complicated deductions.

4.1.4 Syntactic ambiguities

Example:

• Context: A piece of paper was later found on which Luther had written his last statement.
The statement was in Latin, apart from ”We are beggars,” which was in German.

• Question: What was later discovered written by Luther?

• Prediction: A piece of paper

• Answer: [’his last statement’, ’his last statement’, ’last statement’]

In those cases, there’s nothing wrong with the model’s answer syntactically but this response is not
favored by humans. In the above example, the fact that Luther is writing on ”A piece of paper” is of
less importance. These are very hard cases because the model should be able to distinguish what’s
truly important from a human’s perspective.

4.2 Attention Analysis

Figure 6: Attention matrices visualization

In this subsection we visualize the attention matrix(zoom in to see details in Fig 6 and Fig 7). Though
in practice we used a more complicated method to fuse u and h, here for simplicity, we visualize the
heatmap of dot product of u and h. The words with large values are displayed. In the first example,
with the question mentioning ”University Garden and Botanical garden”, the attention is mainly on
the start and the end of the sentence. In the start it mentions botanical garden and in the end it
mentions zoological garden. In the second example, the question asks about which type of building
is the most interesting. The network focuses on the part mentioning architecture and building, and
get the answer ”technology building” correctly. By doing this visualization, we find the attention
mechanism is quite effective.

Note that even the dot product of u and h is not large, it does not mean the network cannot get the
correct answer. Because later there are still modeling layers. In Fig 7, the attention from ”year” to
”2015” is higher compared with neighbors, but lower compared with identical matches, then after
modeling layers the network is able to get the correct answer.
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Figure 7: Attention matrices visualization aligned with logits

5 Discussion and Conclusion

In this paper, we reports our results and implementation details of the start-of-art Bi-Directional
attention flow model which represents the context at different level and combined the context-to-
query and query-to-context direction attention. The experimental evaluations show that our model
achieves competitive results in Stanford Question Answering Dataset (SQuAD). Detail analysis and
visualizations show that the model is able to attend to correct context locations based on the question.
However, the attention region is mostly based on word meaning similarity and the model is incapable
of doing complex deductions and reasoning. Future work can be done on incorporating deeper
attention layers with multiple hops to allow deeper interaction between context and query.
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