
Information Retrieval from Surgical Reports using
Data Programming

Hardie Cate
Computer Science Department

Stanford University
Stanford, CA 94305

ccate@stanford.edu

Elliott Chartock
Computer Science Department

Stanford University
Stanford, CA 94305

elboy@stanford.edu

Zeshan Hussain
Computer Science Department

Stanford University
Stanford, CA 94305

zeshanmh@stanford.edu

Abstract

Natural language processing (NLP) has many potential uses, but perhaps some
of the most beneficial applications are for medical purposes. In this work, we
perform information retrieval (IR) on medical procedure reports for patients suf-
fering from deep vein thrombosis (DVT). We extract information related to two
key domain-specific entities. Since the dataset is largely unlabeled, we use a rela-
tively novel framework called data programming. We build upon this approach by
using several different deep learning architectures as end extraction models. Our
best model on one of our extraction targets attains results that outperform a regular
expression baseline and other non-deep learning approaches, with an F1 score of
0.77 on the test set. These initial results are promising first steps in showing the
effectiveness of our methodology for information extraction on unlabeled medical
reports.

1 Introduction

The field of NLP has recently made great progress in a wide variety of tasks and benchmarks with the
help of deep neural networks. However, one drawback of these networks is that they usually require
large amounts of labeled data to train effectively. The process of acquiring labeled training data is
a critical bottleneck in machine learning, and for many real-world applications, such hand-labeled
datasets do not exist. This is a problem especially for applications of NLP in the medical sphere.
In many situations, vast amounts of information are contained as unstructured data in procedure
reports and images that require complex domain-specific knowledge to interpret. As such, the task of
creating labeled datasets is prohibitively expensive or impossible. Without proper machine learning
systems that leverage this unlabeled data, a doctor who wishes to make an informed decision for
a patient based on past data would need to read through hundreds, if not thousands, of medical
procedure reports. The difficulty of that task along with the critical importance of medical decision-
making necessitate an effective NLP machine learning system for unstructured data.

In this work, we perform IR on a data set provided by colleagues in the Department of Radiology
at the Stanford School of Medicine. The dataset consists of medical procedure reports for patients
suffering from DVT, which is the formation of a blood clot within a deep vein, most commonly oc-
curring in the legs. We design models that extract information in the reports about stents, which are

1

support tubes inserted into veins that aid healing and relieve obstructions. We search for mentions
of two key extraction targets, namely stent brand and stent diameter, within the unlabeled set. To
address the lack of labeled data, we use the data programming paradigm outlined in Ratner et al.
[7], which employs weak supervision in the form of heuristics that can easily be applied program-
matically. We then build discriminative deep learning models, most notably a bidirectional LSTM,
that learn from this data in a noise-aware fashion.

In Section 2, we discuss background and related work, including a brief overview of Snorkel, a
prominent implementation of the data programming framework. In Section 3, we outline our tech-
nical approach which includes our data programming pipeline and our deep learning end extraction
models. In Section 4, we discuss the dataset and our experiments. Finally, in Section 5, we review
our results, and in Section 6, we conclude with our overall findings and future work.

2 Related Work

Many hospital reports currently reside in the form of free text as dark data - unstructured data
that cannot be processed by existing software. In the current age of big data [3], curating and
understanding patient data is an increasingly prevalent problem in the field of health informatics.
The application of accurate information extraction from biomedical reports is widespread, including
clinical decision support, treatment assistance, and pharmacovigilance [1, 2].

Semi-supervised learning techniques such as bootstrapping and transfer learning have proven to be
a good start in the task of biomedical information extraction [4]. Xu and Wang use bootstrapping
techniques to identify drug-gene pairs in MEDLINE articles [9]. Their model, which starts with just
one labeled relation, outperforms previous dictionary-based approaches to the same dataset. While
semi-supervised learning is an improvement over non-machine learning extractors, other weak su-
pervision approaches have yielded better results, while avoiding the need for even a single labelled
extraction target.

Oberkampf, et al. use a distant-learning model to extract measurement-entity relations from ra-
diology reports [6]. Their knowledge-based approach uses an annotator to perform measurement
extraction and named entity recognition of ontology concepts, and then further test the extracted
relations on a knowledge model that contains common size specifications for the extracted relation.
In this project the authors discover that high F1 can be achieved with a large enough ontology, irre-
spective of knowledge base size. Many distant-learning approaches, like the work of [6], hinge on
the existence of large and accurate ontology databases, which will not be accessible in all domains.

Ratner et al. solve this problem with the data programming paradigm [7]. This approach allows
users to specify weak supervision strategies in the form of heuristics, or labeling functions, which
are used to programmatically generate training sets. These labeling functions are often noisy and
may conflict, but by modeling the process as a generative model, it is possible to ”denoise” this train-
ing set in many cases. A ”noise-aware” discriminative end model is then created, which is where the
user can apply conventional deep learning architectures. Ratner et al. show that given certain con-
ditions on the labeling functions, their method achieves the same asymptotic scaling as supervised
learning methods. In other words, with just O(1) labeling functions, data programming is capable
of achieving the same guarantees for a desired error bound ε as a labeled dataset with the canonical
O(ε−2) training examples. Ratner et al. apply data programming to unlabeled datasets in tasks
including genomics and pharmacogenomics, in which they outperform baseline distant supervision
approaches by an average 2.34 points for F1 score.

3 Technical Approach

3.1 Problem Statement

Our inputs in this problem are unstructured reports of surgical procedures done on patients with
Deep Vein Thrombosis. Given an input report, we aim to train a model that finds mentions of
an extraction target. We focus on two extraction targets: stent brand and stent diameter. More
concretely, our method can be divided into two phases. The first phase entails applying the data
programming paradigm to the reports, where we extract candidates and noisily label them using our

2

Train Discriminative
Deep ModelUnstructured

Reports
Candidate
Extraction

Labeling Functions Fit Generative
Model

Entity Extraction

Figure 1: A diagram of our full workflow, starting with unstructured raw text to a fully structured
training set on which we train several discriminative models.

labeling functions. In the second phase, we analyze and experiment with several end deep learning
models that perform the classification. Furthermore, for each candidate, the end extraction model
classifies whether that candidate is a mention of the extraction target (i.e. either stent brand or stent
diameter). A more detailed explanation of both phases is given in the following sections.

3.2 Data Programming with Deep Learning

Our implementation of the data programming pipeline leverages and continues the existing pipeline
created by Ratner et al. (entitled Snorkel [8]). To get the pipeline off the ground, we run the
procedure reports through a preprocessing step that splits the document into sentences and tokens
and provides such annotations as part-of-speech tags, dependency parse structure, named entities,
etc. using Stanford CoreNLP [5].

3.2.1 Candidate Extraction

After parsing and preprocessing the text, the first major step in the data programming paradigm is
candidate extraction. In this stage, we extract words or tokens that represent possible mentions for
our extraction targets, stent diameter and stent brand. Our candidate extractor for stent diameter
considers any token containing a numerical character, while the corresponding one for stent brand
retrieves all n-grams for n = 1, 2, 3. We choose a maximum value of n = 3 because according
to our colleagues in Stanford Interventional Radiology, the vast majority of stent brands/types are
expressed in three words or fewer. The objective of candidate extractors is to maximize recall at the
potential expense of precision. They aim to capture all possible mentions of the extraction targets,
which are then passed on to the labeling function stage.

3.2.2 Labeling Functions

Labeling functions are the next step in the pipeline that make weak supervision possible. Formally, a
labeling function is a mapping λ : χ→ {−1, 0, 1} on the set of candidate extractions χ that provides
a non-zero label for some subset of the objects. These functions can encode domain heuristics or
incorporate information from external knowledge bases. Since they are intended to predict heuris-
tically and potentially naively, individual functions need not have perfect precision or recall; rather
labeling functions can (and should) overlap and conflict. In the next step, we describe the generative
model that learns the dependencies among labeling functions.

3.2.3 Generative Model

Once we have enough reasonable labeling functions (on the order of 5-10 in most cases) with suf-
ficient overlaps, conflicts, and coverage, we use these functions to train a generative model. The
model learns, under certain reasonable conditions, a parameterization of the interactions between
labeling functions by applying maximum likelihood estimation and minimizing a noise-aware risk
measure. Once the learning is complete, the model takes as input a candidate with surrounding
context and generates a noisy label. Rather than hard labels consisting of strictly 0 or 1, these noisy
labels are real-values between 0 and 1 that represent an estimate of the probability of the occurrence
of a true label based on the labeling functions applied to the candidate. At this point, we can apply
a noise-aware discriminative end model that learns using these generated labels.

3

Figure 2: Diagram of our full multilayer bi-LSTM model.

3.2.4 Deep Discriminative End Models

We utilize three baseline models. The first baseline simply finds all mentions of the extraction target
using a regular expression. For stent diameter, the regex that we use takes advantage of the fact that
the diameter is usually the first dimension in the following measurement format for a stent: A mm
x B cm. Similarly, the regex that we use for stent brand simply checks whether there is a number
plus a dimension immediately on the left as well as the word ”stent” on the right.

Our second baseline model is a vanilla logistic regression. We run this model on the features ex-
tracted from the candidate and the candidate context, including its span text as well as dependency
path. These features are part-of-speech tags, dependency parse structure, lemmatized word forms,
and named entities. We pass this feature matrix, F , into the logistic regression model as follows,

ŷ = σ(Fw + b)

loss = CE(ŷ, ymarginal)
(1)

Note that instead of using strict 0 or 1 labels in the training set, we use the probabilistic labels
(training marginals) generated by the generative model in the data programming phase. The third
baseline model that we use is a fully connected neural network with one hidden layer. We use the
same featurized matrix that was used as input for the logistic regression model.

Our final model is a multilayer bidirectional LSTM (bi-LSTM). The input to the bi-LSTM is the
sentence that contains the candidate. We process the input slightly by tagging the candidate with an
open and closing brace. For example, suppose the original sentence containing the candidate is ”The
13 mm x 14 cm stent was inserted into the common iliac vein,” with ”13” being the candidate. Then
the new input sentence is, ”The –[[13]]– mm x 14 cm stent was inserted into the common iliac
vein.” The reasoning behind tagging the candidate in the input sentence is to insert a local attention
mechanism for the bi-LSTM. Intuitively, the brackets indicate to the bi-LSTM where the candidate is
in the sentence, allowing it to pay more attention to that specific part of the sentence. Our base model
is a one layer bi-LSTM that consists of a recurrent neural network in both the forward and backward
directions and one output layer. As input to the output layer, we concatenate the outputs that are

4

emitted from the final hidden states of both the forward LSTM and the backward LSTM. Formally,
if the outputs from the forward LSTM and the backward LSTM are hfT and hbT , respectively, then
the input to the final output layer is, hT = [hfT ;h

b
T]. We then apply dropout to hT to help overfitting

issues and then run it through the following affine transformation: out = WhT + b. Finally, we
compute a logistic loss during train time as shown in Equation 1 and compute a prediction during
test time by running out through a sigmoid layer. Our full architecture is shown in Figure 2.

4 Experiments

4.1 Dataset

The dataset consists of 561 procedure reports as free-form text, sixty-six of which are labeled for our
two extraction targets. We divide these labeled reports into development and test sets. Each label
consists of a character span within a document marking the location of a mention of an extraction
target. Thus, given an extraction target and one of these 66 documents, each of the labeled spans
has a label of 1 and all other spans in that document have an implicit label of 0. Reports are labeled
such that these spans correspond precisely to mentions in the text rather than to individual stents. For
instance, a single stent might have references in several places in the text, each of which corresponds
to a mention in the labeling scheme. See Figure 3 for an example excerpt from one of the procedure
reports.

”...the IVC and bilateral iliac veins 20. Simultaneous bilateral common iliac vein 12
mm x 8 cm SMART stent deployment 21. Balloon venoplasty bilateral...”

Figure 3: An excerpt from the dataset containing a mention of both the stent brand and stent diam-
eter extraction targets. The diameter mention is shown in blue and the brand is in red.

4.2 Experiments and Evaluation

We run several experiments for our entity extraction tasks. First, we run regex baselines on our test
set; essentially, this experiment entails writing a regex (as part of a labeling function, for example)
and predicting 1 for a candidate if it matches the regex exactly and−1 if it does not match the regex.

Next, we run the logistic regression and 1-layer neural network models on our dev and test set. For
both models, we first run a random hyperparameter search on the dev set. Specifically, we search
the space of learning rates, L1 regularization, and L2 regularization parameters between 10−2 and
10−6. Then, we run our best model found during this random search on the test set and report our
results.

Our final experiments are with the multilayer bi-LSTM model. We run extensive experiments on
the characteristics of the bi-LSTM model to analyze its behavior. In particular, we see how perfor-
mance of the bi-LSTM is affected by varying the embedding dimension size of the input vectors,
the number of hidden layers, the rebalance parameter, and the learning rate. Note that the rebalance
parameter refers to the ratio of positive to negative examples in our training set. Because our dataset
is unbalanced towards negative examples, we specify a rebalance parameter in order to dynamically
rebalance our dataset before train time by randomly sampling from the negative examples. The re-
sults of these experiments, all of which are run on the dev set, are shown in the next section. Finally,
we take the best parameters from our prior experiments and run a final model with those parameters
on the test set. To measure the performance of our models, we use precision, recall, and F1, standard
metrics in NLP and information retrieval.

5 Results and Analysis

In Figure 4 and Figure 5, we report our findings on the behavior of the bi-LSTM for stent diameter
when varying its hyperparameters. In Figure 6 (see Appendix), similar results can be found for
the behavior of the bi-LSTM on stent brand entity extraction. Note that we did not run as many

5

Figure 4: Learning rate experiments for bi-LSTM (top); Rebalance parameter experiments for bi-
LSTM (bottom)

Stent Diameter Stent Brand
Model Regex LR FCN Bi-LSTM Regex LR FCN Bi-LSTM

Precision 0.814 0.540 0.605 0.818 0.6 0.118 0.192 0.111
Recall 0.565 0.964 0.929 0.726 0.326 0.674 0.789 0.958

F1 0.667 0.692 0.732 0.770 0.423 0.201 0.309 0.200

Table 1: Final results on two extraction targets for various models

hyperparameter experiments for stent brand due to time constraints. The candidate training set
for strent brand is an order of magnitude bigger than the candidate training set for stent diameter;
consequently, the bi-LSTM takes much longer to train.

Analyzing the hyperparameter experiments done for stent diameter, we see how altering learning
rate affects performance. Namely, there is a fairly smooth improvement in F1 score as the learning
rate is increased, plateauing at around 10−2. We observe an opposite trend with respect to rebalance
parameter. As we increase the rebalance parameter, the F1 score tends to go down. This phenomenon
makes sense, as a higher rebalance might lead to more overfitting on the positive examples. More
positive examples, via more procedure reports, will help this problem significantly. Next, we see that
a lower embedding dimension results in a higher F1 score, which can be explained with a similar
overfitting argument. Namely, model complexity increases with higher dimensional embeddings,
potentially leading to overfitting due to low bias and high variance. Finally, we increased the number
of hidden layers in our bi-LSTM, with not much affect in performance. This result is most likely
due to a lack of data to train deeper than 1-layer bi-LSTM models. A common trend in all our
experiments is that adding more complexity to components in our model tends to either have little
or negative effect on performance due to lack of data.

For stent brand, we look at behavior of the bi-LSTM model when varying learning rate and rebalance
parameters. The effect of varying learning rate on bi-LSTM performance for stent brand is akin to
the effect of this variation on performance for stent diameter. That is, higher learning rates in our

6

Figure 5: Bi-LSTM experiments varying number of embedding dimensions (top); Results for dif-
ferent number of bi-LSTM layers (bottom)

search space tend to lead to higher F1 scores. With regard to rebalance, we see a somewhat opposite
effect when compared to stent diameter. Namely, a higher rebalance leads to a higher F1 score.

We report a summary of our final baseline and bi-LSTM results in Table 1. For stent diameter, our
bi-LSTM outperforms all baselines by at least 4 F1 points, with an F1 score of 0.77. We slightly
overfit on the dev set, which is expected given the complexity of the bi-LSTM and the dearth of
data. For stent brand, our logistic regression and 1-layer neural network models get F1 scores of
0.201 and 0.309, respectively, while our bi-LSTM produces an F1 score of 0.200. There are several
reasons for why the bi-LSTM does not outperform the baselines for stent brand. The primary reason
is that the candidate set for stent brand is too large, meaning that there are potential candidates that
match some words in a common stent brand, but may not actually be a true mention. This will lead
to many false positives, leading to low precision, which is exactly what we observe. It may also be
the case that our labeling functions are too noisy. More time to iterate on the candidate extraction
and labeling functions for stent brand would certainly lead to higher performance.

6 Conclusion

In this work, we apply the data programming paradigm to weakly supervise unlabelled surgical
reports. We then apply noise aware deep learning models to the generated labels to perform binary
classification on certain extraction targets. The bidirectional LSTM has an F1 score of 0.77 for stent
diameter, significantly outperforming other tested models. The relatively small dataset available for
this project limits the complexity of deep learning models that we can train. For future work, we
will acquire a larger dataset and experiment with a deeper LSTM network with attention. We will
also make better use of the domain expertise of our friends at the Stanford Hospital to refine our
labeling functions.

An important takeaway from our work is that despite our limited knowledge of DVT, we were able
to train an accurate extraction model. We have successfully demonstrated a proof of concept for
synthesizing weak supervision with deep learning models to effectively extract information from
unlabeled surgical reports.

7

Acknowledgements

We would like to thank Alex Ratner, Nishith Khandwala, and Henry Ehrenberg for their help and
guidance with this project. Finally, we would also like to thank Chris, Richard, and the rest of the
224N staff for teaching the course.

References

[1] Carol Friedman et al. “Representing information in patient reports using natural language pro-
cessing and the extensible markup language”. In: Journal of the American Medical Informatics
Association 6.1 (1999), pp. 76–87.

[2] Rave Harpaz et al. “Text mining for adverse drug events: the promise, challenges, and state of
the art”. In: Drug safety 37.10 (2014), pp. 777–790.

[3] Steve Lohr. “The age of big data”. In: New York Times 11.2012 (2012).
[4] Xinbo Lv, Yi Guan, and Benyang Deng. “Transfer learning based clinical concept extraction

on data from multiple sources”. In: Journal of biomedical informatics 52 (2014), pp. 55–64.
[5] Christopher D. Manning et al. “The Stanford CoreNLP Natural Language Processing Toolkit”.

In: Association for Computational Linguistics (ACL) System Demonstrations. 2014, pp. 55–60.
URL: http://www.aclweb.org/anthology/P/P14/P14-5010.

[6] Heiner Oberkampf et al. “Knowledge-based extraction of measurement-entity relations from
german radiology reports”. In: Healthcare Informatics (ICHI), 2014 IEEE International Con-
ference on. IEEE. 2014, pp. 149–154.

[7] Alexander J Ratner et al. “Data Programming: Creating Large Training Sets, Quickly”. In:
Advances in Neural Information Processing Systems. 2016, pp. 3567–3575.

[8] Henry Ratner Alex; Ehrenberg. Snorkel. https://github.com/HazyResearch/
snorkel.git. 2017.

[9] Rong Xu and QuanQiu Wang. “A semi-supervised approach to extract pharmacogenomics-
specific drug–gene pairs from biomedical literature for personalized medicine”. In: Journal of
biomedical informatics 46.4 (2013), pp. 585–593.

Appendix

Figure 6: Stent brand experiments for learning rate (left); Experiments for rebalance parameter
(right)

8

http://www.aclweb.org/anthology/P/P14/P14-5010
https://github.com/HazyResearch/snorkel.git
https://github.com/HazyResearch/snorkel.git

	Introduction
	Related Work
	Technical Approach
	Problem Statement
	Data Programming with Deep Learning
	Candidate Extraction
	Labeling Functions
	Generative Model
	Deep Discriminative End Models

	Experiments
	Dataset
	Experiments and Evaluation

	Results and Analysis
	Conclusion

