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Abstract

Code completion software is an important tool for many developers, but it tradi-
tionally fails to model any long term program dependencies such as scoped vari-
ables, instead settling for suggestions based on static libraries. In this paper we
present a deep learning approach to code completion for non-terminals (program
structural components) and terminals (program text) that takes advantage of run-
ning dependencies to improve predictions. We develop an LSTM model and aug-
ment it with several approaches to Attention in order to better capture the relative
value of the input, hidden state, and context. After evaluating on a large dataset of
JavaScript programs, we demonstrate that our Gated LSTM model significantly
improves over a Vanilla LSTM baseline, achieving an accuracy of 77% on the
non-terminal prediction problem and 46% accuracy on the terminal prediction
problem.

1 Introduction

Modern software engineers rely on a multitude of tools to expedite their development process. Many
utilize integrated development environments (IDEs) that offer services such as text editors, debug-
gers, and even intelligent code completion. Code completion software has become ubiquitous in the
contemporary IDE and traditionally relies on static analysis of libraries and code to provide helpful
suggestions about method names or object fields. It is useful for avoiding typos or syntax errors and
often saves the developer from having to constantly consult documentation.

Prior work in code completion has primarily focused on the aforementioned static and syntactic
approaches in generating code suggestions [1]-[4]; however recent work has also began to examine
statistical and learning based language models [5]-[7]. Learning based approaches offer an exciting
new lens on the code completion problem as the suggestions can hope to capture deeper semantic and
idiomatic meaning and represent a small step towards automated code generation. Our work intends
to build upon learning based approaches by applying techniques grounded in the deep learning
literature [8]-[9] such as Long Short-Term Memory (LSTM) and Attention to the code completion
problem.

We contend that leveraging deep learning techniques allows us to gain insight into code structure
and locality that was heretofore unavailable to traditional code completion systems. Syntactic and
library based suggestions ignore crucial information such as the names of currently scoped variables
and common structural idioms such as the try/catch/finally paradigm that deep learning approaches
can hope to capture.

We introduce an LSTM model with Attention that makes considerable progress towards generalized
code completion by predicting program structure through non-terminal prediction (Variable Dec-
laration, For Loop, If Statement, etc) and modest progress for the challening problem of terminal
prediction (program text). This improves significantly over a statistical language model or simple
LSTM baseline and is the primary contribution of this paper.
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Figure 1: An example of modern code completion systems that offers static suggestions based on
available methods or fields independent of the preceding code.

We evaluate our models on a large dataset of JavaScript programs that has been used as a benchmark
in prior work [10]. The dynamically typed nature of JavaScript creates an added challenge for the
code completion problem as there is far less syntactic information available. While static library
information would still be useful for predicting object method and field names, we choose to focus
our attention solely on building a deep language model for code prediction independent of these
static libraries.

In this paper, we first describe the relevant prior work in code completion. We then describe, the
models we implemented, our dataset, and the experiments we ran. Then, in our final section, we
share our conclusions from this research and characterize the space of future work.

2 Related Work

The majority of existing approaches to the task of code completion can be categorized as n-
gram models [11], probabilistic grammars [5], and log-bilinear models. However, these initial
approaches are naive in that they only encode hierarchical library information based on a very
local scope to make predictions and are unable to understand long range running dependencies
which are often necessary to make useful completions. Considering this limitation, various works
[2]-[4] have demonstrated that these approaches, which are implemented in existing IDEs, can
be improved significantly with the incorporation of a greater context by considering program history.

Bielik et al. addresses this proposition by generalizing the traditional probabilistic context free
grammar approach to condition on grammar rules beyond those of the parent non-terminal thus
capturing a richer context relevant to the current prediction [5], and Raychev et al. further build
upon this work by introducing decision tree approaches within this infrastructure [6]. Finally,
Raychev et al. and White et al. model code as an abstract syntax tree (AST) on which they explore
the ability of recurrent neural networks (RNNs) to perform code completion [10], [12], however;
neither RNN directly leverages the structural information contained in the AST, and the RNNs are
both only run on top of a token sequence to build their probabilistic models.

To address the limitations demonstrated by the existing RNN models, there is a body of recent work
that explores the application of deep learning techniques that leverage syntactic, as well as semantic,
information to accomplish the task of code completion. Specifically, we modeled our work on that
done by Liu et.al who recently attempted a solution to the problem we are trying to solve; providing
intelligent code completion for dynamically typed languages using natural language neural network
techniques [Paper Under Review]. These authors use a repository of JavaScript source files and the
associated abstract syntax trees (AST) as their dataset which they represent as a serialized sequence
of non-terminal node and terminal node pairs where non-terminal nodes encode program structure
and terminal node encode program text. They then consider segments of 50 non-terminal terminal



tokens to represent partial ASTs from which they attempt to make three types of predictions: next
non-terminal; next terminal; next non-terminal, terminal pair.

To make these predictions, the authors first compute embeddings for each token which they feed
through a standard LSTM model with a single hidden layer, a softmax layer and Adam optimization.
The authors only utilize one-hot vectors rather than word vector representations, which we hope to
improve upon in our work. Additionally, while the authors claim that they can outperform the
existing state of the art code completion technology, their evaluation metrics ignore cases where the
model predicts the next token as one that isnt in the vocabulary.

Notwithstanding the questions raised by the work presented by Liu et al., it is a valuable starting
point for the work presented in this paper. That said, we will look to build upon the implementation
of a standard LSTM by augmenting the model with various techniques used in other natural
language problems. We find particular inspiration in the works presented by Bhoopchand et al and
Merity et al [7], [9]. Bhoopchand et al. demonstrate the ability of attention models to enhance
the performance of a code completion system for Python source code. They draw motivation
from the absence of relatively little support for dynamically typed languages from existing IDEs
which are inherently more difficult to model due to relaxed grammars. Bhoopchand et al. also
extend the existing work by implementing local attention models of various window sizes and a
sparse pointer network neural language model in which they probabilistically sample from the
current LSTM state and an attention window to make predictions. As done by Liu et. al, the
authors predict separate terminal and non-terminal predictions and their results demonstrate that
standard attention models provide significant improvements for both types of predictions, and
the sparse pointer network outperforms existing models for the top 5 most likely next nodes.
However, we will note that these results are produced for a single source code file and it is un-
clear if the demonstrated level of success will generalize across a larger code base with noisier input.

The work of Merity et al. presents the seminal discussion of pointer sentinel mixture models which
may address the aforementioned limitation. As in traditional attention and pointer models, this
model considers a global vocabulary of all possible tokens, and a context vocabulary consisting
of tokens within the context window. This model then incorporating a gate function to dictate
the importance placed on the entire vocabulary versus the context vocabulary, and a probabilistic
weighting of whether to use the gating function. While this approach has yet to be applied to the
task of code completion, it effectively addresses low frequency and/or unobserved tokens, and we
believe it has the potential to better capture long range syntactic and semantic dependencies across
an entire code base and will generalize well in the implementation of an IDE for dynamic languages.

3 Deep Learning Models for Code Completion

One of the key limitations of the existing n-gram, probabilistic grammar, and even to an extent RNN,
approaches is their inability to encode, in whole or in part, complex long range dependencies. The
ability to model such relationships is crucial to a task such as code completion in which the system
must recall variables and function calls in previous portions of the code in order to intelligently
predict the next token. Given the depth of work surrounding n-gram and probabilistic grammar
approaches to the task of code completion and the demonstrated limitations, we begin our work with
the implementation of a vanilla LSTM model.

3.1 Vanilla LSTM

Specifically, we feed an embedded sequence of non-terminal, terminal token sequences through an
LSTM layer which consists of a forget gate, input gate, and output gate which encode the extent
to which the model should remember the past outputs, emphasize the current input, and expose the
current output, respectively. The embedding of each non-terminal, terminal token is calculated as

€Tr; = ANZ +BTIL

where NN; is the randomly initialized non-terminal embedding and 7; is the terminal embedding
trained with GloVe. We then define the LSTM layer as:

f = O'(JCtUi + ht_lwi)



i = o(z U+ hy W)
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g = tanh(xU9 + hy_1W9)
c=c_10f+goi
hy = tanh(ct) o o
This layer takes the token embedding x, as well as the previous state (¢;—1, ht — 1) as inputs and
processes these inputs through the series of the aforementioned gates i, f, and g to produce a new

state (¢¢, ht). For non-terminal prediction, at the last state K, we apply a softmax layer to the output
(ck, hK) from the LSTM layer defined as:

Ngy1 = softmax(Wnhg + by)

where N1 is the output predicted vector, and Wy and by are trained weights. For terminal
prediction, we consider one extra partial token consisting of just a non-terminal, x ;1 which is
appended to the end of the non-terminal, terminal token sequence. We obtain the hidden state hy as
above and then calculate the final output vector T 41 as:

Tk 1 = softmax(Wrhg + WnrNg 1 + br
where N 1 is calculated as above and Wy, W7 and by are trainable weights.
Finally we apply a cross entropy loss to this final output vector.
We next create a series of attention models which we layer on top of this baseline LSTM model in

an attempt to make more intelligent predictions by better honing the focus of our model.

3.2 Tail Attention

We start with the implementation of a standard global attention model which we will refer to as tail
end attention.
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Figure 2: Simplified tail LSTM architecture for predicting the next non-terminal node.

Tail end attention implements the same basic LSTM layer described above but inserts an additional
calculation at the last time step of the LSTM to produce a context vector, cntx, which aggregates
the outputs of the past ' — 1 hidden states and is used to create the final output vector. Specifically,
we calculate cntx by first defining a score, « for each of the past K — 1 hidden states, h:

a =hsWhg, foreachs €1,..K — 1

We then use this score to calculate a normalized weighted sum of the past K — 1 hidden states.
The result of this calculation is the context vector cntx which is then concatenated with the current
hidden state hy and fed into two softmax layers to produce the final output vector:

K-1
entx = O’(Z ashs)
s=1
v = softmax(Weentx + Wphi + by)
o = softmax(o = Uyv +b,)

While tail end attention enhances the maintenance of running dependencies, this solution is incom-
plete in that this model does not retain the relative importance of individual past states.



3.3 Sum Attention

To address this problem, we create a novel attention model which we will call sum attention. Like
tail attention, sum attention is a global attention model which uses the same series of calculations;
however, we apply these calculations at every time step within the LSTM layer and feed the resulting
output as the input into the next hidden state. Specifically, for any time step k, we calculate a context
vector, cntxy, based on the past £ — 1 hidden states and then set hy = cntxj before proceeding to
the next state.

Sum attention accomplishes our goal of propagating the relevant information of each individual
hidden state across future states; however, the calculation of relevance is still naive in that all states
are weighted equally. To improve upon this model we experiment with two variations of a weighted
sum attention model which we will refer to as p-sum attention and alpha-beta sum attention. Rather
than simply summing hj and cntxj at each time step k, we now calculate the new hidden state
output vector as a weighted sum with weights p, 1 — p in the case of p-sum and «, 3 in the case of
alpha-beta sum. Specifically, for p-sum attention we calculate the output as:

hy = phy, + (1 — p)entay,
where p is a trainable constant with the constraint that 0 <= p <= 1 such that the weights represent
probabilities. For alpha-beta sum attention we calculate the output as:
hAk = ahy + Bentxy

where « and f are trainable constants initialized to a random number between -1 and 2. We initially
looked at a range from O and 1 but found that slightly expanding the range decreased our training
loss and performed better than pSum (all Sum Attention results below refer to o5Sum).

3.4 Gated Attention

Finally, the iterative improvements to our attention model culminate in the creation of a gated atten-
tion model. This model was created to address the limitation of the weighted sum models which, by
utilizing trained constants, do not have the flexibility to adapt to different inputs, but instead must use
the same set of weights for all inputs. Its implementation is motivated by the LSTM gated structure
whereby, rather than using trained constants, the layer learns functions which are applied to inputs
and thus has the flexibility to make different decisions for different inputs. To create our model we
replace the aforementioned weights with two gates, a context gate g. and a hidden gate g;, which
moderate the relative influence of the context vector and current hidden state in the calculation of
the output hidden state, respectively, and are defined as:

ge = o(Ucentay, + Weay)

gn = o(Unhy + Wyxy)
We then calculate the output of the hidden state as

Ok = ge © cntxy + gn © hy

4 Experiments

4.1 Data

We conduct our experiments on a 150,000 program Javascript dataselﬂ containing source files and
their corresponding parsed ASTs, released by the Software Reliability Lab at ETH Zurich.

For example, the simple program:

console.log("Hello World!");

Has the corresponding AST:

'"http://www.srl.inf.ethz.ch/js150
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[ { "id":0, "type":"Program", "children":[1] },
{ "id":1, "type":"ExpressionStatement", "children":[2] },
{ "id":2, "type":"CallExpression", "children":[3,6] },
{ "id":3, "type":"MemberExpression", "children":[4,5] },
{ "id":4, "type":"Identifier", "value":"console" },
{ "id":5, "type":"Property", "value":"log" },
{ "id":6, "type":"LiteralString", "value":"Hello World!" }, 0]

We split this dataset into a train set of 100,000 JavaScript files, a development set of 20,000 files,
and a test set of the remaining 30,000 files.

We preprocessed the data by converting the program ASTs into their corresponding Left-Child
Right-Sibling (LCRS) representations so that we can explore the tree structure in a binarized format.
We then conduct an in-order traversal of the LCRS to serialize it into sequences of 49 tokens, each
containing a non-terminal and terminal node pair.

Terminal nodes contain a value that encodes the literal text of a program. Non-terminal nodes only
contain a type (i.e. IfStatement, LiteralString) that describes a structural attribute of the program.
We choose to allow non-terminal nodes to encode two additional bits of information about the tree
structure that makes it possible to re-create the original AST. For each non-terminal node type, we
include binary variables describing whether the node has a terminal child and/or a right sibling. In
total, there are 176 possible non-terminal nodes.

Because there is an infinite space of possible terminals, we chose to make the terminal prediction
problem more tractable by restricting our consideration to the 50,000 most frequent terminals in the
codebase and an additional UNK, or unknown terminal to represent all other terminals.

We then trained word vector representations for the 50,000 most frequent terminals and UNK and
the 176 non-terminals. The most frequent terminal vectors are trained using GloVe [13] over the
codebase, while the vectors for UNK and the non-terminals are randomly initialized and are updated
during training. Token embeddings are represented as the concatenation of their terminal and non-
terminal component embeddings.

4.2 Setup

We ran several experiments on our dataset to explore the effectiveness of our models. In our exper-
iments, the input was a partial code segment comprised of 49 tokens (non-terminal, terminal pairs)
and the output was a prediction for the next non-terminal or terminal in the sequence.

We focused on two different prediction problems: next non-terminal and next terminal prediction.
Because non-terminal prediction is more tractable - only 176 possible outputs compared to an infinite
number for terminal (which we reduce to 50000), we focused the majority of our exploration on non-
terminal prediction.

For non-terminal prediction, we evaluated our models using two measures of accuracy. Standard
accuracy is the ratio of correct non-terminal predictions to total predictions. Flex accuracy is the
ratio of correct non-terminal predictions (ignoring the bits encoding structural aspects of the AST)
to total predictions.

For terminal prediction, we again evaluate our models using accuracy. However, because we are
using an UNK terminal to allow the models to choose not to predict one of the 50000 most frequent
terminals, we must account for this in our accuracy measure. To do so, we define the accuracy to
be the ratio of the correct terminal predictions (ignoring UNK predictions) to the total predictions
(again ignoring UNK).

Unless otherwise stated, we trained our models for 12 epochs on a GPU with 6 cores and 56 GB of
memory.

4.3 Results

Figure 3(a) shows the train loss at each epoch for each of our models run on non-terminal prediction.
As one might expect, as we increased the model complexity we found a decrease in train loss, and
our most advanced model, the Gated LSTM shows the lowest loss. In Figure 3(b) we see comparable
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Figure 3: Non-terminal prediction loss and flex accuracy.

System Accuracy | Flex Accuracy
Baseline Vanilla LSTM 0.44 0.55
with Tail Attention 0.54 0.66
with Sum Attention 0.61 0.74
with Gated Attention 0.65 0.77
Terminal LSTM 0.46

Table 1: Accuracy results.

flex accuracy scores to what we would expect from the loss graph. Gated LSTM performs the best
with Sum LSTM not far behind. There is a clear improvement over the Vanilla LSTM when we
add Attention, with the Tail LSTM doing a full 10% better than the Vanilla LSTM and the Gated
LSTM improving over the Vanilla LSTM baseline by over 20%. Clearly, the enhanced maintenance
of running dependencies from attention has a strong positive effect on the accuracy of non-terminal
prediction, and as we build up our model to vary the relative importance of previous states we do
even better.
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Figure 4: Grid search for two of our models.

We also ran grid search to tune several hyperparameters of our models: namely the dropout rate,
the learning rate, and the batch size. Figure 4 shows the results of our grid search on the Vanilla
LSTM and the Gated LSTM. When comparing the two plots, we notice that the effect of the hyper-
parameters on the Gated LSTM accuracy has a much larger range than on the Vanilla LSTM. We
hypothesize that this is due to the greater complexity of the Gated LSTM model and so the impacts
of small variations in the hyperparameters build up and manifest in the overall accuracy.



Table 3 summarizes our results for the experiments that we ran. For non-terminal prediction (the
first 4 rows of results), we see that attention clearly offers a strong boost in accuracy and that our
more complex models of Sum and Gated Attention truly offer impressive results for the non-terminal
prediction problem. The final row shows the accuracy we got for running our model on the terminal
prediction problem. Recall that for terminal prediction we only measure accuracy for non-UNK
predictions, so what this means is that 46% of the time that we predicted a non-UNK terminal we
predicted the correct one. This turns out to be a reasonably impressive result as there were 50000
possible terminals that could have been predicted.

Figure 5 shows that our model was able to correctly predict the terminal result in the console.log.
This indicates an understanding of variable locality which is a vague approximation of scope (or
hoisting in JavaScript) - because result appeared near the terminal node that we wanted to predict
our model was able to make a correct prediction. In Figure 6 we see that our model is able to
correctly predict the non-terminal else if block. From a human perspective it makes complete sense
as to why else if is the next logical attribute in the program structure, particularly because of the
condition in the if statement. But this is a subtle point and hard to capture even with longer term
dependencies. We were pleased that our model was able to make this correct prediction and suspect
that the combination of being in a closure, the kinds of terminals found in this passage, and of course
the previous if statement all played a role.

// Correctly predicting the variable result in console.log
if (true) {
for (var result in foo) {
console.log (result);

}

Figure 5: Predicting the terminal result in console.log

5 Conclusion

We have found that deep learning techniques are well suited to the task of code completion. LSTM
models augmented with Attention perform well on the task of next non-terminal prediction. In par-
ticular, our Gated LSTM model performs best with a flex accuracy of 77% as it is able to continually
learn the relative value of the input, hidden state, and context. This marks a sizable improvement
over the Vanilla LSTM which had flex accuracy of 55% for non-terminal prediction. We also made
a first attempt at the very difficult problem of next terminal prediction. However, we were pleased to
find that when our model was confident enough to make a prediction, it did reasonably well scoring
an accuracy of 46%. These results indicate that this area and approach are worth continued research.

5.1 Future Work

We characterize several opportunities for future work. One augmentation to the terminal prediction
models is a probabilistic copying function which would allow the model to copy terminals it had seen
in the window with learned probabilities. We think this would be a promising approach as terminals
are scoped and often repeated within functions and code blocks, and so it is often a good idea to
copy terminals you have seen previously even if they are not in the top 50000. Another direction
would be to augment our models with syntactic features that exploit the structured nature of code.
For example, we could reject predicting a terminal string when syntactically the code requires an
integer. Finally, we hope to see a deep learning model integrated into an existing code completion
system in order to augment the existing static library approach and offer much more powerful code
completion.



// Correctly predicts a non-terminal else if block.

var burrito = require(./);
window.onload = function () {
var res = burrito.microwave (Math.sin(2), function (node) {
if (node.name === num) {

node.wrap (Math.PI);
}
1)

document .body.innerHTML = res;

if (document.readyState === complete) {
window.onload() ;

} else if(...) {

}
}i

Figure 6: Predicting the non-terminal else if block.
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