
CS224n PA4: Extending Match-LSTM

Sebastian Goodman
sebastian.goodman@gmail.com

Keegan Mosley
keegan.r.mosley@gmail.com

Abstract

We propose two novel extensions to the Match-LSTM Boundary model for question
answering on the SQuAD dataset. First we propose doing attention in the passage
and question encoders. Second we propose adding a one-way conditional depen-
dency between start-of-span and end-of-span prediction. In our evaluations, we
show that these extensions result in a model that outperforms our implementation
of vanilla Match-LSTM, suggesting a direction for future research.

1 Background

The task of automated question answering has received a great deal of attention from the modeling
community. Answering a natural language question implies a deep understanding of a passage and
question text, so it can be seen as an important problem in natural language processing.

The SQuAD dataset Rajpurkar et al. [2016] in particular is relevant to this paper. It is a dataset
consisting of question, passage, and answer tuples, where the answer occurs verbatim in the passage.
Existing approaches to this dataset include a logistic approach evaluated by that paper and the
Match-LSTM approach described in Wang and Jiang [2016].

Neural models such as the Match-LSTM approach achieved near-state-of-the-art performance using
attention and answer-pointer mechanisms. In this paper, we build on the Match-LSTM approach by
trying out different architecture variations on the original model.

2 Problem Statement

In this research, we attempt to improve on the performance of the question-answering Match-LSTM
model on SQuAD. We propose two architectural changes to the model and a new training technique.
We evaluate these changes in terms of model performance on the F1 and EM metrics and report
results.

3 Architecture: Extending Match-LSTM

In this section, we describe how we propose to modify the Match-LSTM model to address some
of its limitations. We propose adding attention at the encoder layers, in order to allow contextual
information to be used at encoding time. We also propose a new type of decoder layer to address the
tenuous connection between span-start and span-end predictions. We do not propose any changes to
the Match-LSTM layer itself; that component remains in place in all of our runs.

3.1 Extension 1: Attention at the encoder layer

The first extension we propose to Match-LSTM is attention at the encoder layer. In Wang and Jiang
[2016], question and context are encoded separately, without any conditioning between them:

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Hc =
−−−−→
LSTM(C)

Hq =
−−−−→
LSTM(Q)

Here, C and Q are context and question embeddings, respectively. Hc and Hq are hidden representa-
tions of the context and question, i.e. the encoded representations at each timestep. We believe that
not having context at encoding time misses a valuable opportunity to efficiently encode contextual
information.

Our proposal modifies these two equations as follows:

Hc =
−−−−→
LSTM(C, attn(Q))

Hq =
−−−−→
LSTM(Q, attn(C))

This gives each encoders the ability to record contextual meaning for each word, as they relate to
words in the other input text (see 3.1 for a detailed illustration).

We believe this will help when words in the question inform the interpretation of the context. For
instance, in the case of a "When..." question, the encoder might want to encode dates such as
"November 1986" differently. Or, consider the following instance, taken from the training set:

Q: What clauses does the 14th Amendment include ?

C: The Fourteenth Amendment to the United States Constitution (Amendment XIV)
is one of the post-Civil War amendments , intended to secure rights for former
slaves . It includes the due process and equal protection clauses among others .
The amendment introduces the concept of incorporation of all relevant federal
rights against the states . While it has not been fully implemented , the
doctrine of incorporation has been used to ensure , through the Due Process
Clause and Privileges and Immunities Clause , the application of most of the
rights enumerated in the Bill of Rights to the states .

A: due process and equal protection clauses

In this example, the answer is immediately followed and preceded by words in the question. We
believe that this is a common pattern. We hypothesize that encoding with attention will be an
improvement over encoding without it.

2

Figure 1: Our question and context encoders, based on the encoders in Wang and Jiang [2016]. The
only difference is attention at the encoder/embedding level (dotted arrows indicate attention inputs).

3.2 Extension 2: Conditional Span Decoder

The second extension we propose to the Match-LSTM model is a new decoder architecture called
Conditional Span Decoder, meant to replace the answer-pointer network described in Wang and Jiang
[2016].

In the answer-pointer decoder, the span-start and span-end positions are predicted co-dependently
(at least in the best-performing version of the model). In probabilistic terms, the Answer-Pointer
boundary model chooses the most likely start index (as) and end index (ae) based on the following
formula:

P (ae = i, as = j|C,Q) = P (ae = i|C,Q)P (as = j|C,Q)

We propose a new decoder architecture that models a one-way conditional dependency between these
probabilities, so that the start prediction informs the end prediction. Specifically, we rewrite the
formula as:

P (ae = i, as = j|C,Q) = P (ae = i|as = j, C,Q)P (as = j|C,Q)

To accomplish this, we add a new unidirectional RNN for the span end. Its inputs are the predictions
of the span begin decoder, i.e. Ppred(as = j|C,Q), and the Match-LSTM outputs Hs. See Figure
3.2 for a detailed diagram.

3

Figure 2: Answer-Pointer from Wang and Jiang [2016] (left) vs our Conditional Span Decoder (right).

We hypothesize that reformulating the model with this conditional dependency will improve prediction
quality. Specifically, we believe that this will cut down on cases where the start and end predictions
are "out-of-sync", i.e. cases where the predicted span is far too long. In addition, we hypothesize that
overall quality of predictions will improve, due to the additional power of a full RNN for the span
end decoding, rather than the 2-cell LSTM used by Answer-Pointer.

3.2.1 Label-Mixing

We evaluated a training technique which we refer to as label-mixing, which is only possible due to
the structure of our Conditional Span Decoder. During label-mixing, ground-truth labels are fed into
the span end decoder in addition to or instead of the predictions of the span start predictor.

We evaluated two flavors of label-mixing. First, we try a probabilistic approach where the ground
truth labels, i.e. one-hot vectors which we will call Pgt(as = j|C,Q), are sometimes fed instead of
the span start decoder outputs, according to an annealed probability z(t):

z(t) = max(0, 1− training_step/λ)

Where λ is a hyperparameter which determines the annealing schedule.

We also try a weighted approach:

P (as = j|C,Q) = z(t)Pgt(as = j|C,Q) + (1− z(t))Ppred(as = j|C,Q)

We hypothesize that the loss of the span end decoder in either of these configurations will be less
than the loss of Answer-Pointer (note that losses are directly comparable since they both involve

4

softmax cross-entropy over the context length for both ae and as). In addition, we hypothesize that
this will lead to better predictions because the span end predictor will a better idea of what it is trying
to model, since periodically it is fed "clean" input probabilities, rather than the outputs of another
RNN.

3.3 Inference

At inference time, we use two different approaches, depending on the decoder.

When using Answer-Pointer, we use the same inference used in the Match-LSTM paper. We do
an exhaustive O(C2) search to find argmaxi,j(P (as = i|C,Q)P (ae = j|C,Q)), where C is the
context size.

When using Conditional Span Decoder, we first select argmaxj(P (as = j|C,Q)) and from there
search forward to find argmaxi(P (ae = i|as = j, C,Q)). This reflects the modeling decision of
choosing the span end as a surrogate problem.

4 Methodology

We ran several experiments to showcase our architecture changes, first we established our baseline
implementation of the Match LSTM paper (a simple question/context encoding layer, followed by the
Match LSTM attention layer, then the Answer Pointer decoder). We then ran an experiment enabling
attention in the initial encoding layer. This was followed by another experiment where we replaced
the decoder with our Conditional Span Decoder (CSD). Finally, we ran a network utilizing both
attention in the encoder and CSD. The experiments evaluated F11 and Exact Match (EM) percentages
over a holdout dataset, results can be seen in Table 1

The SQuAD dataset contains 81386 training examples, 4284 validation examples, and a "secret" test
set used for final evaluation. We evaluate the performance of our model using the F1 and EM (exact
match) metrics. We use GloVe 100-d word embeddings for initialization.

We use the same hyperparameters used in Wang and Jiang [2016], 150-unit LSTMs, learning rate of
.001, adaptive optimizer (adam; adamax was used in the paper but was not available in TensorFlow),
context limit of 300 and question limit of 30.

We compute the F1 metric across the evaluation set as

F1 =
2E[recall]E[precision]

E[recall] +E[precision]

We compute the EM metric as a simple accuracy

EM =
num_correct_spans

num_spans
.

In terms of EM, a correctly predicted span is defined as one where the model predicts the words of
the answer exactly correctly, in the correct order. F1 is more lenient in that it allows partial credit to
be given for predictions that partially overlap the ground truth.

5 Results

The detailed results of our experiments can be found in Tables 1 and 2. The first shows the performance
of our four primary tests showcasing our proposed architecture changes. The second shows the results
of a battery of tuning experiments we ran plus the results of using the label-mixing technique.

The experiments show that adding attention to the encoders (i.e. Extension 1) yields about a 35%
boost to the F1 score and 57% boost to Exact Match vs the baseline model and and 14% F1 and 20%
EM vs the CSD-only experiment.

1Our F1 score is computed as F1 = 2E[recall]E[precision]/(E[recall] +E[precision]), not as F1 =
E[2 ∗ recall ∗ precision/(recall+ precision)], so that is why our F1 numbers are higher. We discovered this
bug very late so we kept the results to keep things consistent.

5

The experiments also show no significant gains for using CSD instead of Answer Pointer (i.e.
Extension 2) when you are also using attention encoding (Extension 1). The slight gain in F1 and
loss in EM can be attributed to experimental noise.

We ran several tuning experiments for our best model. We have included the results for some of
these runs in Table 2. For reference, "Init RNN States" refers to setting the initial state on the initial
context encoder to the output state of the question encoder. "Dropout" refers to adding 20% dropout
to the initial encoder and Match LSTM outputs. "No LR Decay" refers to removing the polynomial
decay from our learning rate. "Layer Norm LSTM Cell" refers to replacing LSTM cells with the
LayerNormBasicLSTMCell Tensorflow implementation of [Lei Ba et al. [2016], Semeniuta et al.
[2016]].

We also experimented a little with manual post-training answer calibrations. We applied a prior
probability onto answer lengths to adjust span selection from the learned outputs and also blocking
unlikely words from appearing at the start or end of answers. Both of these yielded neutral-worse
performance, which we’re happy about since it implies less low hanging fruit for improving obviously
incorrect answers.

Table 1: Base Experiment Results

Name F11 Exact Match

Match LSTM + Answer Pointer .5088 .2830
Match LSTM + CSD .5997 .3704
Match LSTM + Answer Pointer + Attention Encoding .6865 .4440
Match LSTM + CSD + Attention Encoding .6822 .4460

Table 2: Tuning Experiment Results

Name F11 Exact Match

Attention Encoding + Match LSTM + CSD + Weighted Label Mixing .6593 .4260
Attention Encoding + Match LSTM + CSD + Probabilistic Label Mixing .6420 .4260
Attention Encoding + Match LSTM + CSD + Init RNN States .6817 .4510
Attention Encoding + Match LSTM + CSD + Dropout .6573 .4320
Attention Encoding + Match LSTM + CSD + No LR Decay .6670 .4560
Attention Encoding + Match LSTM + CSD + Layer Norm LSTM Cell .6656 .4330

6 Answer Analysis

See Table 3 for a breakdown of scores by first question word. We show that the performance on
"when" questions is very high, as expected. The when questions are probably of the easiest variety,
mostly dates. The who questions are also fairly easy for our model to predict and represent a decent
bulk of the questions. Our model has a harder time with the more generic "what"-style questions,
but interestingly this represents approximately half of the questions we sampled, so further analysis
should include a drill down into this category.

Table 3: Scores by First Question Word

Word Count (out of 1k) F1 Precision Recall

why 17 0.591072 0.521314 0.682382
which 29 0.565751 0.542529 0.591051
where 39 0.654287 0.636518 0.673077
how 73 0.647615 0.660850 0.634899
when 80 0.840939 0.837122 0.844792
who 94 0.708966 0.684929 0.734752
what 500 0.592297 0.556406 0.633138

6

We extracted some sample instances from one of our models for further analysis.

Q: What despcription was assigned to minority leader in part ?
C: The roles and responsibilities of the minority leader are not well-defined . To a large

extent , the functions of the minority leader are defined by tradition and custom . A
minority leader from 1931 to 1939 , Representative Bertrand Snell , R-N.Y. , provided
this " job description " : " He is spokesman for his party and enunciates its policies .
He is required to be alert and vigilant in defense of the minority ’s rights . It is his
function and duty to criticize constructively the policies and programs of the majority ,
and to this end employ parliamentary tactics and give close attention to all proposed
legislation . "

A: He is spokesman for his party and enunciates its policies .
?: Representative Bertrand Snell
precision=0.000000 recall=0.000000

In this instance, the model has trouble understanding the meaning of the passage/question, and
guesses the most likely answer to be the name of a person. Our model is clearly focused on extracting
likely "answer" candidates rather than a true understanding of what is being asked and what is in the
passage.

Q: What denomination do these small groups belong to ?
C: There are many other Protestant denominations that do not fit neatly into the

mentioned branches , and are far smaller in membership . Some groups of individuals
who hold basic Protestant tenets identify themselves simply as " Christians " or "
born-again Christians " . They typically distance themselves from the confessionalism
and/or creedalism of other Christian communities by calling themselves "
non-denominational " or " evangelical " . Often founded by individual pastors , they
have little affiliation with historic denominations .

A: " non-denominational " or " evangelical "
?: Protestant
precision=0.000000 recall=0.000000

In this instance, the model provides a decent answer, and one could argue that the model actually did
a decent job since Protestant is more of a "denomination" than "non-denominational".

Q: Who established the Theotokos Paregoritissa Church in 1294-96 ?
C: The Church of the Holy Apostles in Thessaloniki was built in 1310–14 . Although some

vandal systematically removed the gold tesserae of the background it can be seen that
the Pantokrator and the prophets in the dome follow the traditional Byzantine pattern .
Many details are similar to the Pammakaristos mosaics so it is supposed that the same
team of mosaicists worked in both buildings . Another building with a related mosaic
decoration is the Theotokos Paregoritissa Church in Arta . The church was established
by the Despot of Epirus in 1294–96 . In the dome is the traditional stern Pantokrator ,
with prophets and cherubim below .

A: the Despot of Epirus
?: Despot of Epirus
precision=1.000000 recall=0.750000

In this case, the model receives a small penalty to recall for not including "the" in its answer. This
seems more or less like an issue with the evaluation approach. Perhaps having multiple ground truths
and matching the closest one or implementing forgiveness for stop-words would improve the quality
of comparisons between models.

7 Conclusions

7.1 Use Embedding Attention [3.1] During Initial Encoding of Question/Context

Adding attention in the initial encoding layer showed a pretty clear win over both the baseline (35%
F1, 57% EM) and the CSD only model (14% F1, 20% EM). Even though our model tuning didn’t

7

yield substantially better results the fact that it never dipped as low as the baseline or CSD-only
models shows that these gains are somewhat resilient to tweaks.

7.2 Don’t Use CSD [3.2] for the Decoder

Although the CSD-only model did show gains over the baseline (18% F1, 31% EM), the difference
between the attention-only model and the model using both changes was negligible. This implies
that although there was information gain over the baseline using CSD, that information is a subset of
what is gained by using embedding attention during encoding making the CSD change unnecessary.

Furthermore, we actually recommend sticking with Answer Pointer instead of CSD because we saw a
model training time increase of roughly 50% because of the added RNN and softmax layers in CSD.

7.3 Don’t Mix Labels Into Training CSD

Both our experiments with mixing label information into the decoders to guide their learning yielded
worse models. The theory that this aids in early training when the begin decoder is noisy is probably
serves more to prevent the network from getting the gradients it needs early to put it onto the path of
a better convergence point.

7.4 Double Check Baseline Model

The Match LSTM paper we are emulating reported F1 results significantly higher than our baseline
achieved. We’re not sure right now how our implementation diverged from the paper, but it stands to
reason there is some difference. In order for our results to truly be validated, we need to be able to
fully reproduce the results of Match LSTM and alter that to show our attention encoder gains still
hold.

8 Team Member Contributions

Sebastian wrote the architecture section of this paper and did the diagrams. Keegan gathered our
experiment results together and wrote up the analysis and conclusions portions of this paper. We both
ran many experiments and we both have dozens of commits into the git repo with bugfixes, model
development, scripting, etc..

References
J. Lei Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. ArXiv e-prints, July 2016.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for machine
comprehension of text. CoRR, abs/1606.05250, 2016. URL http://arxiv.org/abs/1606.05250.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout without memory loss. CoRR,
abs/1603.05118, 2016. URL http://arxiv.org/abs/1603.05118.

Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer. CoRR,
abs/1608.07905, 2016. URL http://arxiv.org/abs/1608.07905.

8

http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1603.05118
http://arxiv.org/abs/1608.07905

	Background
	Problem Statement
	Architecture: Extending Match-LSTM
	Extension 1: Attention at the encoder layer
	Extension 2: Conditional Span Decoder
	Label-Mixing

	Inference

	Methodology
	Results
	Answer Analysis
	Conclusions
	Use Embedding Attention [3.1] During Initial Encoding of Question/Context
	Don't Use CSD [3.2] for the Decoder
	Don't Mix Labels Into Training CSD
	Double Check Baseline Model

	Team Member Contributions

