
A new model for Machine Comprehension via
multi-perspective context matching and

bidrectional attention flow

Amirata Ghorbani
Department of Electrical Engineering

Stanford University
amiratag@stanford.edu

Nima Hamidi
Department of Statistics

Stanford University
hamidi@stanford.edu

Abstract

To answer a question about a context paragraph, there needs to be a complex
model for interactions between these two. Previous Machine Comprehension
(MC) where either not large enough to train end-to-end deep neural networks,
or not hard to learn. Recently, after the release of SQuAD dataset dataset,
several adept models have been proposed for the task of MC. In this work
we try to combine the ideas of two state-of-the-art models (BiDAF and
MPCM) with our new ideas to obtain a new model for question answering
task. Promising experimental results on the test set of SQuAD encourages
us to continue working on the proposed model.

1 Introduction

The task of machine comprehension is to enable a machine understand a given block of text
and then answer a question related to that text.

To address the comprehension problem, several large data sets have been developed by
researchers. RCTest [1] has been developed for the task of answer selection from a small set
of alternatives defined by annotators. It consists of 500 fictional stories and four multiple
choice questions per story and has 2000 questions in total. Despite the proposed MC methods
based on this dataset, the limited size of the dataset prevents building deep neural network
models. To alleviate the scarcity of supervised data, Hermann et al. [2] developed a dataset
of millions of Cloze style MC examples through semi-automated techniques from news articles
of CNN and Daily Mail. It uses the bullet point summarization of each news article and
constructs a triple of paragraph, question, and answer by replacing one entity in the bullet
points with placeholders. The machine’s task then would become filling the placeholder in
the question with an entity in the paragraph. Performing hand analysis in [3], however,
concluded that the dataset is not challenging enough to assess the present-day MC techniques.

Recently, Rajpurkar et al. [4] developed Stanford Question Answering Dataset (SQuAD)
that first of all has no constraints on the set of allowed answers, other than they should be
in the paragraph, and, Secondly, it is almost two orders of magnitude larger than previous
datasets.

In this work, we focus on the SQuAD dataset and propose introduce our model, an end-to-end
deep neural network model. In this work we have the assumption that the answer of the
question is part of the paragraph that has the most similarity with the question. The model
introduced in this work, matches the context of the paragraph with the question in several
stages of the model. We have also assumed the answer to have a beginning and ending in
the paragraph context, therefore, our model predicts the beginning and ending points of the

1

Figure 1: An example of SQuAD dataset

answer. We have experimented our model on the test set of SQuAD and achieved reasonable
performance.

In what follows, we start with a brief literature review (Section2), followed by defining the
MC task(Section 3). Then we discuss the details of our model(Section 4) and then evaluate
our model (Section 5).

2 Related Work

The original paper from Rajpurkar et al. [4] adopted a sparse featured linear model based on
the part-of-speech tags and n-grams in the question and the candidate part of the paragraph.
Syntactic information was used in the form of the dependency paths in order that more
general features would be extracted.

Weston et al. [5] in Memory Networks repeated computing the attention vector between
question and paragraph through multiple layer; referred to as multi-hop. Shen et al. [6] used
a combination of Memory Networks with Reinforcement Learning to control the number of
hops dynamically. Wang et al [12] designed a multi-perspective context matching assuming
the answer span of the paragraph being similar to the question.

Kadlec et al. [7] fed the a final prediction output layer with attention weights computed
once. Cui et al. [8] used a similarity matrix between the question and paragraph tokens to
compute the question to paragraph attention.

Bahdanau et al. [9] uses updates the attention weights dynamically given the question,
the paragraph, and the previous attention. Hermann et al. [2] discussed the performance
advantage of dynamic attention model over the models that use a fixed question vector to
attend on paragraph tokens. Minjoon et al [?] in BiDAF used a memory-less paragraph-to-
question and question-to-paragraph attention mechanisms.

3 Task Definition

Machine Comprehension involves a paragraph, a question from the paragraph, and the
span of the answer inside the paragraph. (Figure 1) The MC model first comprehends the
question, then compares tokens in the paragraph then identifies the answer span in the
paragraph. The SQuAD dataset is a set of (P,Q,A) tuples; where P = (p1, . . . , pN) is an
N-token-long paragraph, Q = (q1, . . . , qM) is an M-token-long question, and A = (as, ae) is
the span of answer in the paragraph where as and ae are the start and end points. In this
work, we define the MC task as learning P (A|P,Q). Then the answer span would be defined
as argmaxA∈A(p) P (A|P,Q) where A(p) is the set of all possible answer span pairs in the
paragraph. In this work, however, we have simplified the prediction as follows:

argmax1≤as≤ae≤NP (as|P,Q)P (ae|P,Q)

2

4 Model Description

We propose a model architecture to estimate P (as|P,Q) and P (ae|P,Q). As you observe,
except the last layer, the P (as|P,Q) and P (ae|P,Q) predictions are done by the same network
with the following layers as depicted in Figure2:

• Layer one: Word Embedding Layer This layer maps each word of the paragraph
and the question to a high-dimensional vector space. In this work, we have used the
GloVe [11] word vectors. The output of this layer would be P = [p1, ...,pN] ∈ Rd×N

and Q = [q1, ...,qM] ∈ Rd×M .

• Layer two : Paragraph Filtering Layer The number of tokens in the paragraph
is always bigger than the number of tokens in the question. In the general case, a
large number of tokens in paragraph are not related to the answer span; the filter
layer tries to alleviate the effect of those token. The method used here is inspired
by [10]. First of all, make a Relevancy Matrix R ∈ RM×N between paragraph and
character tokens is defined:

ri,j = cos(qi,pj)

here cos is the cosine similarity function. Then for each word in paragraph we have:

∀j : Pj = (max
i
ri,j)Pj

Therefore the irrelevant words of paragraph would be alleviated. In other words, if
there is not even one similar token in question for a token in paragraph, it’s effect
would be alleviated.

• Layer three: Contextual Embedding layer In order to model the temporal
interactions between words in the representation of each token of the paragraph
and the question, we utilized a BLSTM to encode embeddings for each token in
the question. Then, conditioned on a trainable scale of the last state vector of the
question BiLSTM, we used the same BiLSTM on the paragraph tokens. Therefore,
for i = 1, . . . ,M :

−→
hQi =

−−−−→
LSTM(hQ

i−1,qi)

←−
hQi =

←−−−−
LSTM(hQ

i+1,qi)

Therefore, for i = 1, . . . ,M :
−→
hQi =

−−−−→
LSTM(hQ

i−1,qi)

←−
hQi =

←−−−−
LSTM(hQ

i+1,qi)

and for j = 1, . . . , N ,:
−→
hPi =

−−−−→
LSTM(hP

i−1,qi)

←−
hPi =

←−−−−
LSTM(hP

i+1,qi)

while
−→
hP0 = kinit ×

−→
hQM and

←−−−
hPN+1 = kend ×

←−
hQ1 . where kinit and kend are constants

to be trained.
−→
H

P
=
−−−−→
LSTM(P) ∈ Rh×N

−→
H

Q
=
−−−−→
LSTM(Q) ∈ Rh×M

←−
H

P
=
←−−−−
LSTM(P) ∈ Rh×N

←−
H

Q
=
←−−−−
LSTM(Q) ∈ Rh×M

3

Figure 2: Network Model

• Layer four: Multi-perspective context matching layer Inspired by Wang et
al [12], with multi-perspectives, each contextual embedding is compared with each
question embedding. The perspective, are going to be learned in the training stage.
First, consider the following operation that given two d dimensional vectors v1 and
v2 and a matrix W , returns an l dimensional multi-perspective matching vector of
the two vectors:

m = [m1, ...,ml] = fm(v1,v2;W)→ mk = cos(Wk,: ◦ v1,Wk,: ◦ v2)

where cos is the cosine similarity. Now for each word pj in the paragraph we are
going to design a 6 vectors as follows:

– Full-matching vectors:

−→mj
full = fm(

−→
hPj ,
−→
hQM ;W 1)

←−mj
full = fm(

←−
hPj ,
←−
hQ1 ;W

2)

– maxpooling matching vectors:

−→mj
max = max

i
fm(
−→
hPj ,
−→
hQi ;W

3)

←−mj
max = max

i
fm(
←−
hPj ,
←−
hQi ;W

4)

– meanpooling matching vectors:

−→mj
mean =

1

N

N∑
i=1

fm(
−→
hPj ,
−→
hQi ;W

5)

4

←−mj
mean =

1

N

N∑
i=1

fm(
←−
hPj ,
←−
hQi ;W

6)

where W 1,W 2,W 3,W 4,W 5,W 6 ∈ Rl×h are trainable.
these vectors are then concatenated to give a matching vector for each token in the
paragraph.

M = [m1, . . . ,mN] ∈ R6l×N

for j = 1, . . . , N mj = [−→mj
full,←−mj

full,−→mj
max,←−mj

max,−→mj
mean,←−mj

mean] ∈ R6l

• Layer five: Modeling layer In order to model the temporal interactions between
matching vectors of each token in the paragraph with its surrounding tokens, we
encode the matching vectors with a BiLSTM. to get fi ∈ Rhf s for i = 1, . . . , N .

F = BiLSTM(M) ∈ R2hf×N

• Layer six: output layer Inspired from Seo et al 2017 [13], the output layer is
application specific. The task defined in this work asks for a span of the paragraph as
the answer. The probability distribution of the start index over the while paragraph
is derived by :

pstart = softmax(wT
1 [M ;F])

where wT
1 ∈ R2hf+6l is a trainable weight vector. We pass F ∈ R2hf×N through

another BiLSTM layer to get F 2 ∈ R2hf×N . Then the end index probability is
computed as follows:

pend = softmax(wT
2 [M ;F 2])

where wT
1 ∈ R2hf+6l is a trainable weight vector. Then, for the start and end index

we have;
as, ae = arg max

i=1,...,end
arg max

j=i,...,N
(pstarti × pendj)

• Training We minimize the sum of the cross entropies for start index and end index
averaged over examples:

L(θ) = − 1

N

N∑
i=1

(log(pstartasi
) + log(pendaei

))

and θ is the set of all trainable parameters.
• Model Complexity As discussed, the model has two constants, two vectors, six

Matrices and four BiLSTM layers to learn resulting in a total of 753,402 parameters.

5 Experiments

5.1 Implementation Details

The corpus was processed using NLTK tokenizer. We used the d = 100 dimensional GloVe
word embeddings and for the words not in the dictionary random word embeddings were
used. All hidden state sizes (h, hf) were 100 and the multi-perspective matching vectors’ size
was l = 50. We didn’t apply dropout in any layer. The optimizer used for minimizing the
loss function was AdaDelta [14] with a batch size of 20, initial learning rate of 0.5, ρ = 0.95,
and = 10−6 and was ran for 10 epochs. In Figure 3 the per batch loss over simulation
time(the number of batches fed) is depicted. The model was trained and implemented with
Tensorflow.

We used the SQuAD test and development sets. The optimizer used was For evaluation, to
metrics are used:

• EM calculates the exact string match between the predicted answer and the truth
• F1 is the harmonic average of precision and recall. Precision is the ratio of true
positives to all number of positives while recall is the number of true positives to
the number of actua positives.

5

Figure 3: average loss per batch over training time

Figure 4: An example of the model’s functional performance

The results of the model on the SQuAD hidden test set compared to human performance
and the state-of-the-art single models is given in Table 1. Our model achieves an EM score
of 39.253% and an F1 score of 52.608%.

Figure 4 demonstrates an instance of model’s correct prediction for a rather difficult question
answering with a large paragraph. Figure 5 demonstrates three instances of model’s mistakes.
In the first mistake, model gets confused. The second mistake depicts model answering
longer than necessary and the third one demonstrates a correct but incomprehensive answer.

We also conducted some more analysis on the Dev set to better understand our model. In
figure 6(a), the performance across different paragraph lengths is demonstrated. Intuitively,
it’s expected for the model to perform better for shorter answers. However, as observed,
there’s no meaningful connection between performance and the paragraph length. Nonetheless,
the performance generally degrades as the question length increases as in Figure 6(b). The
same happens with answer length and the model is totally defunct for answers longer than
15 tokens as depicted in Figure 6(c) . In figure 6(d), the performance across different types
of questions is demonstrated. The model is the most adept for the simple "when" quesiton
compared to the complex "why" questions.

6 Conclusion

In this work, we proposed a new model using ideas of multi-perspective context matching
[12] and bidirectional attention flow [13]. The model identified the span of the answer by
matching each word in paragraph with the question via multiple perspectives. Experimental
results on the test set of SQuAD showed that the model is capable of generating answers
with an acceptable near baseline precision. The next step would be modifying the existing
blocks and experimenting new blocks for the model to improve its performance. Additionally,
being short on time, fine tuning is an important stage that was not done in our experiments.

6

Figure 5: Three instances of model’s mistakes

(a) Effect of paragraph’s length on performance (b) Effect of question’s length on performance

(c) Effect of answer’s length on performance (d) Effect of question’s type on performance

Figure 6: Effects of paragraph’s length, answer’s length, and question’s length and type on
model’s performance

Model EM F1

r-net 72.40 80.75
MPCM[12] 68.88 77.77
BiDAF[13] 72.40 80.75
ReasoNet 70.55 79.36
Our model 39.253 52.608
Human Performance[4] 82.30 91.22

Table 1: Result on the SQuAD hiddent test set

7

References
[1] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A challenge dataset

for the open-domain machine comprehension of text. In EMNLP, volume 3, pp. 4, 2013
[2] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa

Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in Neural
Information Processing Systems, pp. 1693–1701, 2015.

[3] Danqi Chen, Jason Bolton, and Christopher D. Manning. A thorough examination of the
cnn/daily mail reading comprehension task. In Association for Computational Linguistics (ACL),
2016.

[4] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. In Empirical Methods in Natural Language Processing (EMNLP), 2016.

[5] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In ICLR, 2015.
[6] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop

reading in machine comprehension. arXiv preprint arXiv:1609.05284, 2016.
[7] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text understanding with

the attention sum reader network. In ACL, 2016.
[8] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. Attention-

overattention neural networks for reading comprehension. arXiv preprint arXiv:1607.04423,
2016.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. ICLR, 2015

[10] Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah. Sentence similarity learning by lexical
decomposition and composition. In Proceddings of Coling 2016.

[11] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014 Glove: Global vectors
for word representation. In EMNLP, volume 14, pages 1532– 43.

[12] Zhiguo Wang, Haitao Mi, Wael Hamza and Radu Florian. Multi-Perspective Context Matching
for Machine Comprehension. arXiv preprint arXiv:1611.01603, 2016

[13] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, Hannaneh Hajishirzi. Bidirectional Attention
Flow for Machine Comprehension. arXiv preprint arXiv:611.01603, 2017.

[14] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

8

Appendix A: What we did and did not try on the proposed model

There were several options to improve the model we did not had the time for. Some of them
wre as follows:

• fine tuning the parameters was not done which plays a ver important rule in
performance
• We used the basic tokenizer and did not have the time to use CoreNLP.
• In all the state-of-the-art models, there exists a character embedding layer which

output concatenates with the word vectors.
• exploiting different methods of attention was a path we didn’t take
• Using an ensemble was an option that needed training our model several times which

the timing did not allow us to do

There were several attempts we had to make this model better on the Dev set. Some of
them were as follows:

• We tried this model with and without dropout and the result without using dropout
was slightly better (around 1 EM score and around 2 F1 scores better)
• We utilized ADAM and SGD optimizer in addition to AdaDelta. ADAM performed
well compared to SGD. AdaDelta, however, was slightly better
• In the last layer, instead of using an inner production before softmax, we tried using
a two layer feedforward network. The results were significantly degraded. (F1:30
EM:19)
• After contextual matching layer, we tried concatenating the output of paragraph’s

BiLSTM with vectors mj and then feed it to the next layer. The performance was
not acceptable.

Appendix B: Other simple model we tried

Before reaching to the mentioned model, we tried a number of other models, all of which did
not perform well: our first model consisted of:

• It had the paragraph filtering layer,
• then it had the bidirectional LSTMs for paragraph tokens and question tokens,
• then, for each word in paragraph, we concatenated it’s bi-states with that of the

last and first states of the question,
• and in the end we had a feedforward network for prediction

This simple model, however, with and without drop-out did not perform well; EM=19 and
F1=26.

9

	Introduction
	Related Work
	Task Definition
	Model Description
	Experiments
	Implementation Details

	Conclusion

