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Abstract

The recently published Stanford Question Answering Dataset (SQuAD) dataset
provides NLP researchers an interface to evaluate machine reading comprehension
models. We explore a variety of previously proposed architectures and implement
our own in an attempt to maximize performance on the SQuAD dataset. Our most
successful architecture combined ideas from two research papers, Machine Com-
prehension Using Match-LSTM and Answer Pointer and Dynamic Coattention for
Question Answering. We use the encoding and coattention layers from Dynamic
Coattention Networks and the Pointer Net layer from Match-LSTM for prediction.
Our model achieved 60.096% FM and 47.131% EM.

1 Introduction

The Stanford Question Answering Dataset (SQuAD) is a dataset that contains question, context
paragraph and answer triples. Each question is paired up with a relevant paragraph which contains
what the answer should be. These questions and answers were generated by crowd-workers on
Wikipedia articles and SQuAD has around 100k such pairs. Our goal is to build a neural network
architecture that, when fed a question-paragraph pair, generates an answer span within that context
paragraph that answers the question.

Our general approach to solving the problem is as follows. We first convert words to vectors using
pretrained GloVe vectors [2]. Then the question and paragraph vectors are each fed through a Long
Short-Term Memory (LSTM) network to obtain hidden encodings of both. To create an effective
reading comprehension system, the paragraph needs to be read along with the question. We replicate
this behavior by using an attention model to combine the question and context vectors. This gives us
how relevant each word in the context paragraph is to the question. Lastly, we run the result through
another layer of LSTMs to make a final prediction on the answer span (specifically the starting and
ending indices of the span within the paragraph).

2 Background and Related Work

Our research began with Chen et al’s 2016 paper on a similar reading comprehension task, which
involved reading Daily Mail/CNN articles and filling in a missing word in their summaries [6].
In the paper, the authors proposed an architecture that had three layers: encoding, attention, and
prediction. In the encoding layer, they used a recurrent neural network (RNN) to encode the
passages and questions. For the attention layer, the authors used a simple bilinear term to compute
the similarity score between the question q and the ith word of the passage, pi. The scoring function
they considered was αi = qWspi where Ws is a trainable matrix. Finally for prediction, Chen et
al performed a simple linear transformation of the attention vector and picked the index with the
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highest value as the answer choice. Although this paper’s implementation details were simple and
the problem was different, we drew ideas from it, such as separating our architecture into encoding,
attention and prediction layers.

We followed up by exploring another paper that uses bidirectional attention flow for machine
comprehension (Seo et al). This paper extends ideas mentioned in Chen’s paper by creating two
different attention layers, one for context-to-query attention and another for query-to-context
attention. They also run the attention vectors through an additional LSTM that further encodes
them. The outputs of the LSTM are encodings of the paragraph words that are conditioned on the
question - they are context-aware of both the question and paragraph words. As for the prediction
layer, this paper performs a similar linear transformation to get the starting index of the answer
span. To predict the answer’s ending index, however, the result is fed into another LSTM and a
final linear transformation is applied. Our baseline model was primarily based off of Seo et al’s
bidirectional attention flow architecture.

Our final model was inspired by the ”Match-LSTM with Answer Pointer” structure. In their design,
Wang et al. used match-LSTM to encapsulate attention scores. Whereas Seo et al.’s model multiplies
the question and paragraph encoding matrices, match-LSTM applies a non-linearity (tanh) after
combining question and paragraph encodings. It also feeds the result into a LSTM cell for each
word in the paragraph during computation of the attention vector, instead of simply feeding the end
result into one like what Seo et al did. To make predictions, this model uses answer pointers. We
opted for the boundary model in this case, which creates only two probability vectors, corresponding
to the starting and ending indices of the answer.

3 Approach

For our final model, we combined the ”Machine Comprehension Using Match-LSTM and Answer
Pointer” model with the ”Dynamic Coattention Networks for Question Answering” model [1][2].
Specifically, we took the encoding and coattention layers from the second paper and used the bound-
ary model prediction layer from the first paper.

3.1 Question Paragraph Encoding

To represent the question and the paragraph, we encode both separately using two single direction
LSTMs. We then applied a nonlinearity onto the question representation in order to allow for vari-
ation between the question encoding space and the document encoding space [2]. WQ and bq are
parameters to be trained.

Hq′ =
−−−−→
LSTM(Q)

Hq = tanh(Hq′WQ + bq)

Hp =
−−−−→
LSTM(P )

Hq ∈ RQ×l

Hp ∈ RP×l

Next we created an affinity matrix L to represent scores corresponding to both question and context
paragraphs. Using the affinity matrix, we generate attention weights Aq and Ap. Then we compute
contexts Cq and Cp . The contexts are created in order to represent both the attention layer and the
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Figure 1: Graphical representation of our model architecture

encoded question and paragraphs.

L = Hp(Hq)T , L ∈ RP×Q

Aq = softmax(L), Aq ∈ RP×Q

Ap = softmax(LT ),Ap ∈ RQ×P

Cq = HpTAq, Cq ∈ Rl×Q

Cp = [Hq;Cq]Ap, Cp ∈ R2l×P

We then feed a combination of the context matrices with the document into a bilateral LSTM to
incorporate the co-attention and temporal information.

Hr = BiLSTM([Hp;Cp])

Hr ∈ R2l×P

3.2 Answer Pointer Layer

We use the answer pointer layer to predict the start and indices as the answer to a question. This layer
uses the Hr we produced in the attention step to produce the answer span. We use the boundary
model described in Wang et. al’s paper to predict the starting and ending indices. The LSTM is
created with these equations. W a, ba, V , v, c are all parameters to be learned. The answer pointer

3



layer adds the nonlinearity tanh and normalizes to report a score.

F1 = tanh(HrV + (ha0W
a + ba)⊗ ep)

βstart = softmax(F1v + c⊗ ep)
ha1 = LSTM(Hrβ1, h

a
0)

F2 = tanh(HrV + (ha1W
a + ba)⊗ ep)

βend = softmax(F2v + c⊗ ep)
V ∈ R2l×l

W a ∈ Rl×l

ba, v ∈ Rl

c ∈ R
The β’s give us a probability distribution for the indices. For example, to get the starting index, we
would output argmaxiβstarti . To train the model, we used cross entropy loss.

4 Experiments

First we implemented the baseline described in the assignment handout. However, our baseline had
poor results, far below a logistic regression baseline. The poor results were mostly due to an overly
simplified model.

Then we started out using the Match-LSTM architecture for the attention layer, but soon ran into
some obstacles. After training our model for 5 epochs, the highest F1 score we achieved on the
validation set was only 38.1% and the EM score was 27.4%. Aside from the poor performance,
Match-LSTM also took very long to train since there is an additional bidirectional LSTM instead of
just matrix multiplication.

Although it was replaced by the co-attention approach described above, we still present this tech-
nique here:
For the forward direction

−→
G i = tanh(HqWq + (hpiWp +

−→
h rT

i−1Wr + bp
T

)⊗ eQ)
−→αi = softmax(

−→
G iw + b⊗ eQ)

−→z i =
[
hp

T

i−→αiTHq

]

To get the next state
−→
h r
i , we feed it into a LSTM:

−→
h r
i =
−−−−→
LSTM(−→z i,

−→
h r
i )

The parameters are of the following shape:

Wq,Wp,Wr ∈ Rl×l

bp,w ∈ Rl

b ∈ R
For the backward direction

←−
G i = tanh(WqHq + (Wphpi + Wr←−−hri−1 + bp)⊗ eQ)
←−αi = softmax(wT

←−
G i + b⊗ eQ)

The output that we feed into the next layer is

Hr =

[−→
h r

1,
−→
h r

2, . . . ,
−→
h r
P←−

h r
1,
←−
h r

2, . . . ,
←−
h r
P

]
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As the model approached the end of the first epoch, we noticed that our training losses were
inconsistent across mini-batches. After printing the global gradient norm of all our trainable
variables, we saw that large gradient norms (>10.0) heavily increased the training loss. This
would essentially reset much of the learning done in previous mini-batches. In order to fix this, we
implemented gradient clipping.

ĝ ← ∂E
∂W ;

if ||ĝ|| ≥ threshold then
ĝ ← threshold

||ĝ|| ĝ;
end

Algorithm 1: Pseudo-code for norm clipping in the gradients whenever they explode

We also experimented with different optimizers. We started with Adam and then switched to the
Adamax optimizer because it adjusts learning rates for each variable. Adamax is similar to Adam
except that the second order momentum is replaced by an infinite order momentum. We chose to
experiment with Adamax because Adamax is said to be more stable with sparse data such as em-
beddings.

gt = ∇θft(θt−1)
mt = β1mt−1 + (1− β1)gt
vt = max(β2vt−1, |gt|)

θt = θt−1 −
α

1− βt1
· mt

vt

To add on to this, we would also switch to standard Stochastic Gradient Descent (SGD) during later
epochs because SGD provides more predictable and steady changes to parameters. For example we
saved the model parameters after 7 epochs and switched to SGD with a small learning rate of 0.0001.

With these changes, we reran the Match-LSTM with Answer-Pointer model and achieved a highest
F1 score of 38.1% and EM score of 27.4%. Even with these optimizations, our Match-LSTM model
still proved to perform poorly.

At this point, our team decided to scrap the Match-LSTM attention layer entirely and replace it
with a co-attention layer from Xiong et al’s paper. This attention layer is much more direct in its
combination of paragraph and question encodings because we multiply the two matrices together
and then concatenate. We decided to keep the answer-pointer prediction layer because we thought
that the one described in Xiong et al’s paper, a Highway Maxout Network, was unnecessarily
complicated and took too long to train.

The figure above shows a visualization of the matrix Aq in our attention layer. In this heatmap, the
darker the shade, the more correlation there is between the word in the question and word in the
paragraph. For example, the darkest square in the figure corresponds to the word ‘universities’ in
the paragraph and ‘institutions’ in the question which makes sense considering the answer to this
question is ‘national universities’.

The new model, using co-attention and answer-pointer, performed the best so far. It achieved a F1
score of 57.0% and EM score of 43.9%. Another observation was that this model began to over-fit
near the end. After the ninth epoch, the F1 score on the validation set actually dropped down to
54.8% and the EM score decreased to 41.5%. To fix this, we tried using L2-regularization with a
regularization weight of 0.001.

We ran qa answer.py on the dev set with this model to actually see what our predictions were.
We noticed that a lot of our incorrect predictions (in terms of exact match) were very close to the
ground truth, but had a 〈UNK〉 token in it, referring to a word that does not have an embedding in
our GloVe file. The starter code stripped away all the GloVe embeddings that are not in the training
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Figure 2: Heatmap of co-attention matrix for an example question

and validation sets, which means that it throws away words that might appear in the dev and test sets.
To solve this, we had to edit our starter code files like qa data.py to include in our vocabulary
the union of the GloVe vocabulary, and the train and validation vocabularies. For words not found in
the GloVe embeddings, we randomly initialized the word vectors. Lastly, we swapped the indices of
our predicted start and end answer indices if the end index was greater than the start index, bumping
our performance by a final 1% to over 60% F1.

EM F1
Val Dev Test Val Dev Test

Random Guess 1.1 1.3 4.1 4.3
Logistic Regression 40 40.4 51.0 51.0
Match-LSTM w/ Answer Pointer 27.41 38.07
DCN w/ Answer Pointer 42.23 39.04 56.08 52.90
DCN w/ Answer Pointer w/ larger vocab 47.73 46.85 47.131 61.06 60.029 60.096

Table 1: Results using hidden size of 150 and embedding size of 100

4.1 Analysis of Predictions

For the remainder of this section, we only refer to exact matches as our metric of correctness. We
begin our analysis of predictions by breaking down the questions into one of six categories: ‘who’,
‘what’, ‘which’, ‘why’, ‘when’ and ‘where’. Shown below is a table that breaks down our correct
and incorrect predictions into these categories:

From these results, it is pretty clear that our model is best at predicting ‘when’ questions. Even for
the incorrect predictions, our model’s guess is very close to the right answer span. For example, one
of the questions is ‘When did Luther broaden his attacks to include core Church doctrines?’. The
correct answer is ‘1521’ while our prediction is ‘summer of 1521’, which is arguably even more
precise than the ground truth answer.

Our model struggles with ‘why’ questions, only achieving 4.4% accuracy on the dev set. One
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Correct Incorrect % Accurate
who 449 1641 21.5%
what 2067 8108 20.3%
which 150 554 21.3%
why 17 373 4.4%
when 383 670 36.4%
where 146 849 14.7%

Table 2: Break down of correct and incorrect predictions

Figure 3: Visualization of prediction probabilities of start (top) and end (bottom) indices. This ex-
ample predicts correctly. The question is a ”when” question

possible reason is that the model confuses the ‘why’ question with a ‘when’ question. For example
the model predicts the answer ‘May 1888’ to the question ‘Why was AC electricity gaining
popularity?’. Another reason is that our model fails to understand what the ending index to the
answer should be for a ‘why’ question since these types of questions are more open-ended. For
instance, the question: ‘Why has the Muslim Brotherhood facilitated inexpensive mass marriage
ceremonies?’ has the ground-truth answer ’avoid prohibitively costly dowry demands’. However
our model predicted the span ‘to avoid prohibitively costly dowry demands , legal assistance ,
sports facilities , and women ’s groups’. In the future, we can perhaps train our model separately on
‘why’ questions so it does not confuse it with a ‘when’ question, which it is much more successful
at predicting. Also we should impose limits on how long the answer span should be so the model
does not produce rambling answers; it is usually the case that the ground truth answers to ‘why’
questions are fairly short. Another alternative is to have a cost function associated with the length of
the answer because when our model produces answers with 15+ words, it is almost always incorrect.

Aside from ‘why’ questions, the model is also mediocre at predicting ‘where’ questions. It seems
to confuse these with ‘when’ questions as well since both types of questions ask about context; the
model just cannot distinguish whether it is asking for temporal or geographical context. For example
it answers the question ’Where did scientists find their Y. pestis sample?’ with ‘1998’.

5 Conclusion

Over the course of this assignment, we learned about what it is like to be a natural language pro-
cessing researcher. To be completely frank, it was way more difficult than we had anticipated. We
ran into technology issues that we never expected such as memory exhaustion and power outages.
This forced our team to overhaul our code and rewrite it in a more memory efficient way, which was
a great learning experience. For example, we created our custom RNN cell which had a LSTM cell
embedded in it, and fed it into the library dynamic RNN function. Before this change, we unrolled
the time-steps ourselves in a for loop which was grossly inefficient in terms of both computation
and GPU memory usage. This assignment also required the longest training times our team has ever
encountered which made us think critically about planning the appropriate experiments and running
them every night.
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Figure 4: Visualization of prediction probabilities of start (top) and end (bottom) indices. This ex-
ample predicts incorrectly. The question is a ”why” question

The difficulty of this assignment also taught us more advanced neural network architectures. One
benefit of attempting to create a state of the art system was understanding how to read published
papers and then implement them. This challenge pushed us to design a complex model, something
that might not have happened if we pursued our own project. On a similar note, we also learned more
about constructing a model from scratch whereas in class we only had to fill in specific functions. In
particular, we learned about the intricacies of TensorFlow and we even stepped through TensorFlow
source code in order to really understand our bugs.

For future work, we can combine model architectures from multiple papers. For example, Xiong
et al proposed a Highway Maxout Network for forming the predictions of a certain answer index.
We can combine our current architecture with using a Highway Maxout Network for the prediction
steps.
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