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Abstract

Generative Adversarial Nets (GANs), which use discriminators to help train a
generative model, have been successful particularly in computer vision for gen-
erating images. However, there are many restrictions in its applications to natu-
ral language tasks—mainly, it is difficult to back-propagate through discrete-value
random variables. Yet recent publications have applied GAN with promising re-
sults. Sequence GAN (Yu et al. 2017) introduces a solution by modeling the data
generator as a reinforcement learning (RL) policy to overcome the generator dif-
ferentiation problem, with the RL reward signals produced by the discriminator
after it judges complete sequences. However, problems with this model persist, as
the GAN training objective is inherently unstable, producing a large variation of
results that make it difficult to fool the discriminator. Maximum-Likelihood Aug-
mented Discrete GAN (Che at al. 2017) suggests a new low-variance objective for
the generator, using a normalized reward signal from the discriminator that cor-
responds to log-likelihood. Our project explores both proposed implementations:
we produce experimental results on both synthetic and real-world discrete datasets

to explore the effectiveness of GAN over strong baselines.

1 Introduction

Generating authentic human language is a signif-
icant and worthwhile challenge in Natural Lan-
guage Processing. As Richard Feynman said,
“What I cannot create, I do not understand.” Fur-
thermore, text generation has wide-ranging ap-
plications from machine translation to summa-
rization to dialogue generation.

Recurrent neural networks (RNNs), specifically
with long short-term memory (LSTM) cells,
have given a useful architecture for statistical to-
ken generation. The standard methodology has
been to maximize the conditional probability of
the next token based on the training data (maxi-
mum likelihood estimation, or MLE). However,
there are several limitations to this baseline ap-
proach. First, it suffers from exposure bias: dur-
ing generation, the generator may see partial se-
quences that it has not seen in the training data. It
also poorly handles when the generator samples
the next word stochastically rather than choos-
ing deterministically. Finally, it tends to produce
boring and statistically-safe predictions, instead
of text that a human would produce.

This last point, along with the famous Turing
test, has inspired several projects aimed at gen-
erating text that is indistinguishable from what a
human would generate. This naturally leads to
the idea of adding a new model in addition to
the generator: a discriminator model that simply
judges whether a given sentence was generated
by a human or machine.

This setup, known as Generative Adversarial
Networks (GANs), has proven to be quite suc-
cessful in image generation and other real-valued
settings (Goodfellow et al., 2016; Radford et al.,
2015; Yang et al., 2017).

However, applying GANSs to text generation is
quite difficult. In image generation, gradients
can be back-propagated from the result of the
discriminator through the start of the generator,
updating both models at the same time. This is
possible since the generated image is composed
of continuous pixel values. In the case of text,
the generated elements are discrete words: it is
impossible to slightly adjust the value of a word
like is possible with a pixel.



Instead, a reinforcement strategy must be im-
plemented, using rewards from the discrimina-
tor to update the generator’s parameters. Sev-
eral projects have attempted at some variation of
this idea. Yu et al. (2017) proposes a model
named SeqGAN that assigns a unique reward for
every word in the sequence, based on approxi-
mating its average discriminator reward. Li et
al. (2017) elaborates on this technique and ap-
plies it to neural dialogue generation. Finally,
Che et al. (2017) proposes some additional mea-
sures, namely a new update rule, that helped the
generator-discriminator model be better able to
learn.

In this project, we compare the effectiveness of
vanilla MLE (our baseline) to two different GAN
models from the afore-mentioned literature: Se-
qGAN (Yu et al., 2017) and MaLiGAN (Che et
al., 2017).

2 Baseline

Given that RNNs are a good model to generate
sequential data with, the next question is how to
train them. This is done by slowly forcing the
generator to produce sentences that are similar
to the training data via a process known as Max-
imum Likelihood Estimation (MLE) or teacher
forcing.

Specifically, the model works as follows: First,
take some t-word sentence from the training
data: Y = yi,...,4;. The generator (with pa-
rameters ) can make a prediction G (y4|Y1.4—1)
for the next word y, given the first ¢ — 1 words.
Then the likelihood that the generator generates
the training sentence is:

T
Go(Y) = [[ Go(ye[Y1:1-1)

t=1

ey

We want to increase this likelihood or, equiva-
lently, decrease the following (negative log like-
lihood) loss function:

T
J(O) ==Y logGo(ye[Yiu-1) ()

t=1

At a high level: for each real sentence, consider
each partial sequence (that is, feed as inputs into
generator). Then increase the probability that the
model predicts the next token in the real sen-
tence. Run stochastic gradient descent on this
loss on training data minibatches until conver-
gence.

3 Models

3.1 Discrete GAN outline

In order to improve on the MLE baseline, we
evaluate the effectiveness of applying GANs to
help train a generator. Both GAN models (Se-
qGAN and MaLiGAN) that we evaluate take a
similar approach to implementing GANs for dis-
crete data.

The discriminator is a standard 2-class logis-
tic regression problem, can be either a convolu-
tional neural network (CNN) or a bidirectional
RNN, and can be trained with the usual super-
vised learning techniques. It answers the follow-
ing question: Is a sentence real or generated? We
define D, (Y) as the probability that the sentence
Y is real, according to the discriminator (with
parameters ¢).

On the other hand, the generator is trained to
generate sentences that are able to fool the dis-
criminator. It is updated as follows: generate a
sample, get rewards from discriminator, and use
those rewards to determine which probabilities
should increase (using reinforcement learning).

Algorithm 1: Discrete GAN algorithm

pretrain generator

pretrain discriminator

for training iterations do

for discriminator iterations do
sample minibatch from real data
generate minibatch using generator

update discriminator parameters

end

generate minibatch using generator

get rewards from discriminator

use rewards to update generator parameters

end

The difficult part is how to use the reward from
the discriminator to update the generator. The
most naive gradient update (where Y is now a
generated sentence) might look like:

T
Dy(Y) Z Volog Go(yilY1i4-1)  (3)

t=1

That is, if Dy(Y") is large (i.e. the discriminator
thinks the sentence is real), increase the proba-
bilities of each token in that sentence. However,
this update does not prove to be effective enough,
and both SeqGAN (Yu et al., 2017) and MaLi-
GAN (Che et al., 2017) improved on this update
rule.
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Figure 1: Diagram demonstrating discriminator
training (left) and generator training (with Monte
Carlo sampling) (right)

Based on our observations above, we note that
regardless of how well an entire sentence fools
the discriminator, each time step in that sentence
should receive different rewards. For example,
consider the sentences It is windy today. and It is
book today. The discriminator will likely rate the
second sentence fairly low since it does not make
grammatical sense. However, It and is should
not be penalized for this. To address this, Se-
gGAN (Yu et al., 2017) introduces a method to
assign rewards to every generated step (REGS)
by approximating the ultimate discriminator re-
ward for each partial sequence.

Define Q(Y1.:—1, y:) to be the expected discrim-
inator reward given partial sequence Y7.,—1 and
choosing y; as the next token. Then the update
the parameters of the generator with the follow-
ing gradient update:

T
Z Eynco [Go(yi|Yi—1) - Q(Y1:—1, y1)]

t=1

“)
At a high level, this states that if the @) score of
some next token is high (that next token tends
to generate full sentences that fool the discrimi-
nator), then the probability of that token should
increase.

The next concern is that calculating ) exactly
would be prohibitively expensive, growing ex-
ponential in the length of the sentence. Instead,
@ can be approximated by sampling some sen-
tences with a Monte Carlo tree search and aver-
aging the resulting discriminator rewards. To be
precise, let M C(Y7.;) be a set of N sentences all
starting with Y7.; and completed by freely run-
ning the generator. Then

N
Q(Y1:t-1,y1) = % Z D(Y{7)

n=1

where Y"r € MC (Y1)

3.3 MaLiGAN

MaLiGAN handles the generator update in a
different way. The basic version of the algo-
rithm does not given unique rewards for every
step (it can be extended to do so, but without
much gain). Instead it introduces three tricks into
the reward reinforcement: importance sampling,
normalization, and baseline. In the end, the gra-
dient update is:

rp(Y) da
ST Vo log Go(yilY1:-
<Zi rp(Y?) >; olog Go(y:[Y11-1)
(5)

Importance sampling means the function
rp(Y) = D(Y)/(1 — D(Y)) is used instead of
D(Y) itself which weights high discriminator
scores even higher. Normalization serves to
determine the realtive strongest sentence in the
minibatch. Effectively, these combine to identify
the strongest one or two sentences and boosts
their probabilities.

Finally, we subtract a baseline, so that not only
are the strongest sentences rewarded, but the
weakest sentences are also penalized.

4 Synthetic Data Experiments

To demonstrate a simple proof of concept, we
conducted a simulated test with synthetic data,
similar to the method described by Yu et al.
(2017). Generally speaking, a language can
be defined in terms of its underlying statistical
model, which is then encoded in the parameters
of a generator RNN. That is, when we try to gen-
erate natural English, we are actually trying to
find the parameters of this oracle RNN. Thus,
for our synthetic language model, we create a
randomly-initialized LSTM as our “true” (ora-
cle) model to generate a synthetic data distribu-
tion with a vocabulary of 5000 tokens. We will
describe our method of creating this oracle more
in the following section.

4.1 Evaluation Metric

One problem with the task of generation is that
it is fairly difficult to evaluate. Some possible
methods of evaluating how good the generated
sentences include the use of BLEU scores, accu-
racy of the discriminator, cross entropy loss (the
loss from MLE), or manual human evaluation.

Cross entropy loss is attractive because it is pre-
cise and easy to evaluate. Given a real sentence,
the generator tells you how likely it was to have
generated that sentence. But we actually want



to measure the opposite: given a generated sen-
tence, how likely is it for that to be a real "hu-
man” sentence or a machine-generated sentence?
This is what human evaluation can tell us; how-
ever, due to the variation and nature of human
judgement, sole reliance on human evaluation is
both impractical and unfeasible during training.
Fortunately, using synthetic data can give us the
best of both worlds.

As mentioned earlier, language can be defined
in terms of its underlying statistical model, en-
coded in the parameters of a generator “oracle”
RNN. With synthetic data, since we would al-
ready know the parameters of our oracle RNN,
we can evaluate the probability that an arbi-
trary sentence was produced by the oracle—i.e.
whether it is a real sentence (that came from the
underlying statistical model).

As there is no available oracle for English (that’s
what we want to find!), we can instead create
one for a synthetic language as follows: Arbi-
trarily set the parameters of an RNN. Use this
RNN to generate some samples (real data for the
synthetic language). Train the generator on this
synthetic training data. To evaluate the perfor-
mance of the generator, use the loss function:

T
Joracle = — Z IOg Goracle(yt |Y1:t—1) (6)

t=1

While the usual loss compares real sentences
against our generator, this compares generated
sentences against the oracle RNN and thus di-
rectly measures the probability that matters.

In fact, during MLE training (while minimizing
generator loss on the train set) we plot both gen-
erator loss (on the dev set) and oracle loss at each
epoch and compare.

Comparing loss functions

S

Loss

Epochs

Figure 2:

As this shows, the oracle loss steadily decreases
while the generator loss decreases at first and
then steadily increases. This is somewhat ex-
pected and demonstrates an important point:
when the goal is to create human-sounding text,
overfitting to the training set is not necessarily

to be avoided. Overfitting means the generator
would tend not to generate the exact sentences
of the evaluation set. But what matters is that
what the generator does generates could pass for
being human-generated.

4.2 Results

After establishing an oracle RNN and generating
10,000 20-word synthetic sentences of training
data, we ran MLE, SeqGAN, and MaLiGAN and
conducted the following measurements.

First, both SeqGAN and MaLiGAN require pre-
training using MLE. We pretrain for 150 epochs
with batch size 64 and observe a drop and con-
vergence in the oracle loss, as desired.

Next, we pretrain the discriminator, which is
again the same for both SeqGAN and MaLiGAN
and observe its accuracy improve from 50% to
> 99%.

Discriminator Pretrainin

Discrim Accuracy
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Figure 3:

Next, as a sanity check, we freeze the discrimina-
tor after pretraining and run SeqGAN with only
the generator updating. We expect the accuracy
of the discriminator to drop since a better gen-
erator should be harder to distinguish from real
data.

Frozen Discriminator
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Figure 4:

Finally, we ran each algorithm under normal set-
tings to compare the results.
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Figure 5:

4.3 Discussion

There are a couple of notable results from these
plots:

First, even with a frozen discriminator, the gen-
erator made surprisingly little progress in reduc-
ing the discriminator accuracy. Over 800 epochs,
the accuracy fell from around 99.5% to around
98.5%. This suggests that the discriminator is
always ahead in the game. If even by the end,
the discriminator can almost perfectly pick out
the generated sentences, then the generator could
stand to be improved.

On the other hand, we do observe modest gains
for both algorithms compared to the MLE base-
line. SeqGAN immediately improves its oracle
loss, while MaLiGAN has a setback at first but
seems to catch up and potentially surpass MLE.

5 Real Data Experiments

In addition to using synthetic data for a proof of
concept, we further explored the limitations of
our models on a more challenging but fundamen-
tal task: sentence-level language modeling. For
simplicity and efficiency, we only compared the
results of the MLE baseline and MaLiGAN mod-
els. We used the standard Pen Treebank (PTB)
dataset (Marcus et al., 1993), in particular the
pre-defined training and evaluation sets from the
corpus.

5.1 Evaluation Metric

As mentioned earlier, there are many ways to
evaluate text generation: BLEU scores, accu-
racy of the discriminator, cross-entropy loss, and
manual human evaluation; and of these, cross
entropy loss is the most attractive as it is pre-
cise and easy to evaluate. Therefore, we report
sentence-level perplexity, which is averaged over
all the sentences in our evaluation set.

Another attractive evaluation metric is BLEU-
scoring, which measures the similarity between

the quality of machine translation and human
texts. In our context, BLEU would evaluate the
sentences generated by our generator, compared
to the original ’gold’ sentences in PTB. Thus,
following the example of previous authors Yu et
al. (2017) and Che at al. (2017), we also report
the BLEU-3 scores of our generated sentences.

Finally, since evaluation of natural language is
incomplete without some aspect of human eval-
uation, we performed human evaluation on a few
generated sentences as well. We took 5 sentences
generated from MLE and MaLiGAN, and judged
whether each of the sentences generated by our
model(s) were likely to have been generated by
a human.

5.2 Training Setting

In order to reduce the variation of sentence
length, we removed sentences longer than 35
words, and padded sentences shorter than 35
words. This left us with 32584 sentences in
the training set, and 1411 sentences in the eval-
uation set. To reduce the percentage of un-
known words, we additionally brought down
the size of our vocabulary to contain only the
10k most commonly used words in the train-
ing set; and used GloVe vectors (Pennington et
al., 2014), pretrained on Common Crawl (having
around 42B tokens, 1.9M vocab, and 300d vec-
tors) for our word embeddings. Finally, we also
used <START> and <END> tokens, as well as
<UNK> tokens for words in the corpus that are
either not in the top 10k most common words, or
not in the pretrained GloVe vectors.

Like the synthetic data experiments, we pre-
trained MaLiGAN on around 150 epochs of
MLE using a batch size of 64. To reduce over-
fitting, which more-readily occurs in real-word
data since we used pretrained GloVe vectors, we
introduced a dropout keep probability of 0.6 to
our discriminator.

5.3 Results

We note the sentence-level perplexities achieved
by MLE and MaLiGAN from both our experi-
ments and those directly reported by Che et al.
(2017) in Table 1 and the best BLEU-3 scores of
generated sentences from the models in Table 2.

Here are 5 example generated sentences from
each model as well.
MLE:

1. <START> they ’re sell the emerg-
ing york ’s chief economic jeep , ...
<END> ...<END>



Table 1: Eval-perplexities

Algorithm Eval-Perplexity
MLE 128.2069
MLE (Che et al.) 141.9
MaLiGAN 123.5861
MaLiGAN (Che etal.) 131.6

Table 2: BLEU-3 scores of generated sentences
Algorithm BLEU-2

MLE 0.55186
MaLiGAN 0.74332

2. <START> monday in the president ,
right stock prices of s&p at 10 million
... <END> ...<END>

3. <START> the earlier the achieved was
back to be next neck by shield interest
... <END> ...<END>

4. <START> <START> * wilbur will
determine any noting , makes rule or
the california and come to the number
than practically admission ...<END>
...<END>

5. <START>but the crops in 101 % ral-
lied out to program need , which said
the company were relieved ..., the
agency hastings fled sidhpur ...<END>
...<END>

MaLiGAN:

1. <START> the house included the indi-
cated segment group except pearce bar-
rett ...<END> ...<END>

2. <START> the investment games is
for houses , ” said the department ...
<END> ..<END>

3. <START> many economists warburg
privately urge adding nissan and de-
mand moving soup <END>
...<END>

4. <START> wall pepsi responded in-
tensely points decidedly at its impeach-
ment . <END> ...<END>

5. <START> the government says barely
$ 37 million ...<END> ...<END>

5.4 Discussion

As seen in the results from Table 1 above, both
of our reported perplexities appear to be slightly

lower than those reported by Che et al. (2017).
We attribute these low perplexities to our use
of pretrained GloVe vectors. However, the key
takeaway from these reported perplexities is that
the perplexity produced by MaLiGAN performs
slightly better than MLE, albeit by a lesser mar-
gin than the perplexities reported by Che et al.
(2017). This may be because GANs are fairly
difficult to train, and require exact hyperparame-
ter tuning—the specific hyperparameters used by
Che et al. (2017) to achieve such results are un-
known.

In examining the BLEU scores, however, we
note that MaLiGAN outperforms vanilla MLE
by a much higher margin. This seems to imply
that while the perplexities of MLE and MaliGAN
are fairly similar, MaLiGAN is more equipped
to produce much more “human”-like text, than
MLE. Similarly, in examining the sample sen-
tences generated by each of the models, although
the sentences do not appear to carry much mean-
ing, it appears that MaLiGAN prodcues sen-
tences that follow the constructs of the English
language more closely than those produced by
vanilla MLE. Thus, from these results, we have
reason to believe that MaLiGAN may be benefi-
cial and produce fruitful results in other similar
natural language applications, such as machine
translation and neural dialogue generation.

6 Conclusions and Future Work

In our project, we explored the limitations of 3
different text generation models: vanilla MLE,
SeqGAN (Yu et al., 2017), and MaLiGAN (Che
et al., 2017). Using synthetic data, we were able
to show that in general, GANs are modestly more
successful at generating text than vanilla MLE.
Using real data comparisons between MLE and
MaLiGAN, we were able to see a significant im-
provement in terms of "human-likeness’ between
sentences generated by the two models.

As for future work, it would be interesting to
implement input clamping to further reduce the
variance of input sequence lengths and prevent
overfitting. Additionally, the results of our Ma-
LiGAN model point to the potential for promis-
ing results in applications to areas of text gener-
ation where the end-result is expected to sound
more human.” Neural dialogue generation is
an application where it is important to produce
human-sounding sentences, and therefore would
be an interesting one to explore.
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