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Abstract 

Machine comprehension (MC) and question answering (QA) are 
crucial tasks in natural language understanding. Training deep 
neural network-based QA models has become practical upon the 
recent release of the Stanford Question Answering Dataset 
(SQuAD), a significantly larger dataset of question-answer 
pairs created by humans on a set of Wikipedia articles [1].  In 
this paper, we propose an end-to-end neural architecture for this 
task. The architecture consists of a Dynamic Coattention 
Network (DCN) encoder and a Match-LSTM decoder. On the 
hidden SQuAD test set, our model achieves 68.92% F1 and 
57.56% EM. 
 

1 Introduction 
Machine Comprehension (MC) is an unsolved challenge in natural language 
processing. In recent years, several benchmark datasets have been developed to 
measure and accelerate the progress of MC architecture. However, these datasets 
do not provide sufficient human-labeled data to train expressive models. To 
address the deficiency of the previous datasets, Rajpurkar et al. developed the 
SQuAD dataset. The SQuAD task is to predict an arbitrary answer span within the 
given context paragraph. 

The SQuAD dataset is significantly more challenging than previous datasets. For 
example, SQuAD requires deep language understanding, logical reasoning, and 
multi-sentence reasoning. The fact that the answer can be an arbitrary span within 
the context requires modeling complex interactions between the context and the 
question. Human reading comprehension interprets the context with the question 
in mind. Equivalently, a competent MC model should be able to use attention 
mechanism to focus on a certain portion of the context and abstract the 
information. 



In this paper, we assess the strength and weakness of models proposed in previous 
researches and create new models that combine the advantages of these models.  
 
2 Related Work 
The model proposed in the original paper from Rajpurkar et al. on the SQuAD 
dataset first generates a list of candidate answer spans and then uses a linear model 
with carefully crafted lexical features to select the best answer. In later researches, 
deep neural network-based architectures with attention mechanism are most 
commonly used on the SQuAD task. After reviewing a variety of recent researches 
that have pushed forward the frontiers of MC, we decided to keep exploring the 
potential of the following four deep neural network architectures: Dynamic 
Coattention Network (DCN), Answer Pointer (Ans-Ptr), Match-LSTM and LSTM. 
 
2.1 Dynamic Coattention Network 
The DCN model is an end-to-end neural network for question answering [2]. 
The model consists of a coattention encoder attending to the question and the 
context paragraph simultaneously. For complex context and questions, human 
readers often revisit the given context and question to perform deeper 
inference. The coattention encoder captures the interactions between the 
question and the context by simulating this revisiting behavior. This model 
also consists of a dynamic pointing decoder that alternates between assessing 
the most likely start and end position of the answer span.  
 
2.2 Match-LSTM 
Another model that has demonstrated high performance on the SQuAD task is 
Match-LSTM, consisting of a Match-LSTM encoder and a Ans-Ptr decoder 
[3]. The Match-LSTM model sequentially aggregates the matching between 
context and the question with weighted attention. Then the Ans-Ptr selects a 
list of positions from the context paragraph as the final answer. Additionally, 
we have adopted an assortment of deep learning optimization strategies that 
could improve the performance of Machine Comprehension tasks in practice, 
such as dropout, sentinel vectors, and flexible RNN sequence length. 
 
2.3 Dropout 
Dropout is a technique that randomly drops units from the neural network 
during training, preventing the units from overly co-adapting to training data 
[4]. Dropout also provides a more efficient alternative to approximately 
combining many different neural network architectures to improve the overall 
model performance.  
 
2.4 Sentinel  and Trainable Null  
Sentinel vectors are designed for handling rare words in NLP [5]. A hidden 
state has limited capacity in retrieving information from relevant previous 
hidden states.  Even with attention mechanism, most classifiers do not have 
good performance in tasks involving predicting rare or previously unknown 



words. Therefore, the sentinel is proposed to increase hidden state capacity by 
providing a trainable vehicle that is not tied to time steps.  
Inspired by previous work, we have developed our MC model using a 
Coattention encoder and an Ans-Ptr decoder.  
 
3 Approach 
Our end-to-end architecture includes a Coattention encoder and an Ans-Ptr 
decoder. See Figure 1. In section 3.1, we will give an overview on the encoder 
and then on the decoder in Section 3.2.  

 
Figure 1: Coatt-Ans-Ptr Model 

 
3.1 Coattention Encoder 
Let 𝑥"#, 𝑥%#,⋯ , 𝑥'#  denote the context vector. In a Coattention encoder, a 
context paragraph is passed into an LSTM encoder to generate the context 
encoding: 𝑐) = 𝐿𝑆𝑇𝑀/01 𝑐)2", 𝑥)# . The context encoding matrix 𝐶 is defined 
as 𝐶 = 	 𝑐", 𝑐%,⋯ , 𝑐', 𝑐∅ ∈ ℝ8	×(';") . The sentinel vector 𝑐∅ prevents the 
model from overfitting on a particular word from the context. In the output of 
𝐿𝑆𝑇𝑀, we add an additional dropout layer to prevent overfitting. 
 



Let 𝑥"
=, 𝑥%

=,⋯ , 𝑥0
=  denote the question word vector. The question encodings 

are computed with the same 𝐿𝑆𝑇𝑀/01: 𝑄? = 	𝐿𝑆𝑇𝑀/01 𝑞)2", 𝑥)
= . Similarly, 

we concatenate this representation with a sentinel vector. We also add a 
dropout layer at the output of LSTM.  
 
To separate the projection space of context and question representations, an 
affine transformation is performed on the question encoding matrix. The final 
question representation is: 𝑄 = tanh 𝑊=𝑄? + 𝑏= ∈ ℝ8	×(0;"). 
 
To compute the coattention matrix, we first generate an affinity matrix 
corresponding to all context-question pairs: 𝐿	 = 𝐶H𝑄 ∈ ℝ ';" × 0;" . Then 
we normalize the affinity matrix row-wise to produce an attention matrix 
across the document for each word in the question. Similarly, we generate 
attention matrix across the question for each word in the document by 
column-wise normalization: 𝐴= = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐿 , 𝐴# = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐿H . 
 
Next, we compute the following three summary matrices:  

1. Summary of the context with respect to the question: 𝑀= = 𝐶𝐴= ∈
ℝ8×(0;"). 

2. Summary of the question with respect to the context: 𝑀# = 𝑄𝐴# ∈
ℝ8× ';" . 

3. Summary of the previous attention context incorporating each word of 
the document: 𝑀=𝐴# . This summary maps encoding of question into 
the space of context encodings.  

We fuse the last two summaries to generate a co-dependent representation of 
the question and the context: 

𝑀# = 𝑄;	𝑀= 𝐴# ∈ ℝ%8	×(';"). After obtaining the fused representation, we 
pass it through a bidirectional LSTM to obtain a sequence of encoding state ℎ, 
defined as: ℎ) = 𝐵𝑖𝐿𝑆𝑇𝑀	(ℎ)2", ℎ);", [𝑐);𝑚)

#]). We concatenate ℎ)	at each 
LSTM propagation to generate our final encoding 𝐻 = ℎ",⋯ , ℎ' ∈ ℝ%8	×'. 
We then apply a dropout at the final encoding to prepare the knowledge 
representation for the decoder. 
 
3.2 Answer Pointer Decoder 
First, we will give an overview on the sequence model to provide some 
context on the Answer Pointer decoder. In a sequence model, the answer is 
generated as a sequence of indices: 𝒂 = 	 𝑎", 𝑎%,⋯ ,	 
𝑎 ∈ 	 [1, 𝑃 + 1]. Each index corresponds to the position of a selected token in 
the original paragraph. 𝑃 + 1 is a special position that indicates the end of 
the answer.  
 
We want to obtain an attention weight vector, 𝛽 , where 𝛽\,]  is the 



probability of selecting the 𝑗)_ token from the context as the 𝑘)_ token in 
the answer. 𝛽\,a;" gives the probability of stopping answer generation at 
position 𝑘. We model 𝛽	as follows: 
 
We first predict the distribution of the start position by computing: 𝐹c)de) =
tanh 𝐻𝑉 + 𝑏d , 𝛽c)de) 	= 𝐹c)de)𝑣h/)d + 𝑏h/)d, where 𝑉 ∈ ℝ%8×8	, 𝑏d, 𝑣h/)d, 𝑏h/)d 
are parameters to be learned. 𝛽ci = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽c)de)) gives the normalized 
distribution for the start position.  
 
We then pass 𝛽c)de) to the following 𝐿𝑆𝑇𝑀: ℎc)de) = 𝐿𝑆𝑇𝑀	 𝛽c)de)  for one 
step. To calculate the distribution of the end position, we use: 	𝐹/0j =
tanh	(𝐻𝑉 + ℎc)de)𝑊d +	𝑏d) , 𝛽/0j = 𝐹/0j𝑣h/)d + 𝑏h/)d , where 𝑊d ∈
ℝ8×8, 𝑏d, 𝑏h/)d , are trainable variables. 𝛽/i = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽/0j)  gives the 
normalized distribution of the end position. To train the model, we minimize 
the cross-entropy loss. 
 
4 Experiments  
We implemented and tested an assortment of model variants and then chose 
the most robust one to improve by fine tuning model parameters. We 
implemented the following 7 models, and further optimized a subset of them. 
After evaluating the performance on these models, we decided to move 
forward with the Coatt-LSTM and Coatt-Ans-Ptr models. See Table 1. 

Table 1: Experiment Results 
 
Encoder Decoder Optimization Performance % Conclusion 
Coattention HMN - - Too expensive to train 
Coattention Affine - F1 = 11.51,  

EM = 8.59 
Decoder is not expressive 
enough 

LSTM 
(baseline) 

LSTM 
(baseline) 

- F1 = 30.06,  
EM = 21.09 

Competent model. We need 
to update the implementation 
of the bias term 

Coattention LSTM 
(baseline) 

- F1 = 46.80,  
EM = 35.16 

Competent model. We need 
to implement dropout to 
solve the overfitting issue 

Match-LSTM Ans-Ptr - F1 = 39.65,  
EM = 27.34 

Training is very slow. Not 
enough time for design space 
exploration 

Coattention LSTM 
(baseline) 

Dropout, 
Sentinel Vector, 
Flexible RNN 
sequence length 

F1 = 59.57, 
EM = 48.44 

Dropout is effective 

Coattention Ans-Ptr Dropout, 
Sentinel Vector, 
Flexible RNN 
sequence length 

F1 = 68.92, 
EM = 57.56 

Best performance 

 



We expected the LSTM baseline model to have a better performance after 
training on all 20 epochs, so we went back to diagnose the system and we 
found a problem with the bias term. We were initially using a bias term of 
shape [1, max_paragraph_length, state_size], which gave the model excessive 
degree of freedom during training by removing the state-specific contrast 
from the bias term. Therefore, we updated the bias term to [1, 1, state_size]. In 
retrospect, the earlier attempt with the affine decoder might also have been 
impacted by this issue. 
 
After updating the implementation of the bias term, we also introduced the 
sentinel vector to the encoder. From observing the data set, we found the start 
and end words could potentially be one of the low-frequency words, and the 
sentinel will allow the model to address rare words more effectively from 
relevant previous hidden states. We also added trainable null paddings to the 
end of the question and context. Unlike the untrainable embeddings, these 
paddings managed to capture information about the unseen words during 
training. This optimization increased the training speed and performance 
remarkable. 
 
We also observed that the question and the context can vary significantly in 
length. To further reduce the training time, we adopted flexible RNN sequence 
length, which allows the runtime of encoding to be linearly correlated with the 
length of the question or context. 
 
Moreover, we noticed the evidence of overfitting after epoch 10 when the 
divergence between training result and test result started increasing. We 
suspected the overfitting problem can be resolved by introducing a 0.2 
dropout into the model.  
 
We also observed a linear decrease in the loss curve, which indicated a no 
optimal learning rate. We later found that our current learning rate of 1e-3 is 
not optimal for Adam Optimizer, and therefore we should adjust it to 1e-4. 
Consequently, we decided to revisit the two models that had the potential to 
reach desirable performance with the updated learning rate: (1) Coatt-LSTM, 
and (2) Coatt-Ans-Ptr.  
 
Figure 2 shows the training progress of the two models. Both models have 
been optimized with the sentinel vector, dropout (at 0.2) and flexible RNN 
sequence length. 
 



 
Figure 2: Coatt-Ans-Ptr and Coatt-LSTM Model Training Curve 

 
The most notable change was that the loss showed exponential decay over 
training, which validated our previous assumption on the non-optimal learning 
rate. Moreover, in both models gaps between the F1 scores on the validation 
set and the development set are smaller comparing with the previous training. 
By comparing the training statistics of the two models, we concluded that the 
Coatt-Ans-Ptr has a better performance on the SQuAD task. 
 
5 Results  
Our model achieves 68.92% F1 and 57.56% EM on the SQuAD dataset, which 
indicates the robustness of model quantitatively. We would like to give a brief 
analysis on the predicted answers vs. the ground truth. We discovered that our 
model performs the worst on the following three categories of 
question-answer pairs:  

1. Numbers. For example, our model completely failed answering a 
question about percentage of bachelor degrees in US. We conclude that 
our model is failing because our word embeddings do not handle 
percentage numbers.  

2. People’s names positioned closely in the context. For example, our 
model is not able to tell the differences between “Zachary Taylor, 
Ulysses S. Grant, William Howard Taft”. We hypothesize that our 
model is confused by the similar correlations the three names resemble 
to the rest of the context.  

3. Answer with ambiguous boundaries. For example, in one QA pair, our 
model predicted “5th century CE” while the ground truth is “5th 



century”. The tiny difference still indicates the robustness of our model, 
but it also shows that our model is not very sensitive on deciding when 
to stop during decoding.  

 
6 Conclusion 
In this paper, we present an end-to-end MC system, in which we identify the 
key components crucial to compressing and decompressing the information in 
contexts and questions. Moreover, we manage to verify the potential of our 
model through well-defined experiments. We observe that the gap between our 
training and validation sets are reasonably narrow, which indicates the 
robustness of our model.  
 
In the future, we would like to improve our implementation from three 
perspectives. First, we plan to explore more options with the architecture, 
such as more expressive attention mechanisms, as well as decoders from other 
sources. Second, we are also constrained by time in design parameters 
exploration. We would like to experiment with more combinations of 
hyperparameters to quantify their impacts individually on the training process. 
Third, we would like to develop a more descriptive preprocessing script. We 
observe that many of the provided words are rarely used, but they do exist in 
the vocabulary and in the GloVe embeddings. We would like to prune away 
these redundancies to improve the efficiency of our model. 
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