
Codalab Username: yanshuh

Coattention Answer-Pointer Networks for
Question Answering

Yanshu Hong, Yiju Hou, Tian Zhao

Department of Computer Science
Stanford University
Stanford, CA 94305

{yanshuh, yijuhou, tianzhao}@cs.stanford.edu

Abstract

Machine comprehension (MC) and question answering (QA) are
crucial tasks in natural language understanding. Training deep
neural network-based QA models has become practical upon the
recent release of the Stanford Question Answering Dataset
(SQuAD), a significantly larger dataset of question-answer
pairs created by humans on a set of Wikipedia articles [1]. In
this paper, we propose an end-to-end neural architecture for this
task. The architecture consists of a Dynamic Coattention
Network (DCN) encoder and a Match-LSTM decoder. On the
hidden SQuAD test set, our model achieves 68.92% F1 and
57.56% EM.

1 Introduction
Machine Comprehension (MC) is an unsolved challenge in natural language
processing. In recent years, several benchmark datasets have been developed to
measure and accelerate the progress of MC architecture. However, these datasets
do not provide sufficient human-labeled data to train expressive models. To
address the deficiency of the previous datasets, Rajpurkar et al. developed the
SQuAD dataset. The SQuAD task is to predict an arbitrary answer span within the
given context paragraph.

The SQuAD dataset is significantly more challenging than previous datasets. For
example, SQuAD requires deep language understanding, logical reasoning, and
multi-sentence reasoning. The fact that the answer can be an arbitrary span within
the context requires modeling complex interactions between the context and the
question. Human reading comprehension interprets the context with the question
in mind. Equivalently, a competent MC model should be able to use attention
mechanism to focus on a certain portion of the context and abstract the
information.

In this paper, we assess the strength and weakness of models proposed in previous
researches and create new models that combine the advantages of these models.

2 Related Work
The model proposed in the original paper from Rajpurkar et al. on the SQuAD
dataset first generates a list of candidate answer spans and then uses a linear model
with carefully crafted lexical features to select the best answer. In later researches,
deep neural network-based architectures with attention mechanism are most
commonly used on the SQuAD task. After reviewing a variety of recent researches
that have pushed forward the frontiers of MC, we decided to keep exploring the
potential of the following four deep neural network architectures: Dynamic
Coattention Network (DCN), Answer Pointer (Ans-Ptr), Match-LSTM and LSTM.

2.1 Dynamic Coattention Network
The DCN model is an end-to-end neural network for question answering [2].
The model consists of a coattention encoder attending to the question and the
context paragraph simultaneously. For complex context and questions, human
readers often revisit the given context and question to perform deeper
inference. The coattention encoder captures the interactions between the
question and the context by simulating this revisiting behavior. This model
also consists of a dynamic pointing decoder that alternates between assessing
the most likely start and end position of the answer span.

2.2 Match-LSTM
Another model that has demonstrated high performance on the SQuAD task is
Match-LSTM, consisting of a Match-LSTM encoder and a Ans-Ptr decoder
[3]. The Match-LSTM model sequentially aggregates the matching between
context and the question with weighted attention. Then the Ans-Ptr selects a
list of positions from the context paragraph as the final answer. Additionally,
we have adopted an assortment of deep learning optimization strategies that
could improve the performance of Machine Comprehension tasks in practice,
such as dropout, sentinel vectors, and flexible RNN sequence length.

2.3 Dropout
Dropout is a technique that randomly drops units from the neural network
during training, preventing the units from overly co-adapting to training data
[4]. Dropout also provides a more efficient alternative to approximately
combining many different neural network architectures to improve the overall
model performance.

2.4 Sentinel and Trainable Null
Sentinel vectors are designed for handling rare words in NLP [5]. A hidden
state has limited capacity in retrieving information from relevant previous
hidden states. Even with attention mechanism, most classifiers do not have
good performance in tasks involving predicting rare or previously unknown

words. Therefore, the sentinel is proposed to increase hidden state capacity by
providing a trainable vehicle that is not tied to time steps.
Inspired by previous work, we have developed our MC model using a
Coattention encoder and an Ans-Ptr decoder.

3 Approach
Our end-to-end architecture includes a Coattention encoder and an Ans-Ptr
decoder. See Figure 1. In section 3.1, we will give an overview on the encoder
and then on the decoder in Section 3.2.

Figure 1: Coatt-Ans-Ptr Model

3.1 Coattention Encoder
Let 𝑥"#, 𝑥%#,⋯ , 𝑥'# denote the context vector. In a Coattention encoder, a
context paragraph is passed into an LSTM encoder to generate the context
encoding: 𝑐) = 𝐿𝑆𝑇𝑀/01 𝑐)2", 𝑥)# . The context encoding matrix 𝐶 is defined
as 𝐶 = 	 𝑐", 𝑐%,⋯ , 𝑐', 𝑐∅ ∈ ℝ8	×(';") . The sentinel vector 𝑐∅ prevents the
model from overfitting on a particular word from the context. In the output of
𝐿𝑆𝑇𝑀, we add an additional dropout layer to prevent overfitting.

Let 𝑥"
=, 𝑥%

=,⋯ , 𝑥0
= denote the question word vector. The question encodings

are computed with the same 𝐿𝑆𝑇𝑀/01: 𝑄? = 	𝐿𝑆𝑇𝑀/01 𝑞)2", 𝑥)
= . Similarly,

we concatenate this representation with a sentinel vector. We also add a
dropout layer at the output of LSTM.

To separate the projection space of context and question representations, an
affine transformation is performed on the question encoding matrix. The final
question representation is: 𝑄 = tanh 𝑊=𝑄? + 𝑏= ∈ ℝ8	×(0;").

To compute the coattention matrix, we first generate an affinity matrix
corresponding to all context-question pairs: 𝐿	 = 𝐶H𝑄 ∈ ℝ ';" × 0;" . Then
we normalize the affinity matrix row-wise to produce an attention matrix
across the document for each word in the question. Similarly, we generate
attention matrix across the question for each word in the document by
column-wise normalization: 𝐴= = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐿 , 𝐴# = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐿H .

Next, we compute the following three summary matrices:

1. Summary of the context with respect to the question: 𝑀= = 𝐶𝐴= ∈
ℝ8×(0;").

2. Summary of the question with respect to the context: 𝑀# = 𝑄𝐴# ∈
ℝ8× ';" .

3. Summary of the previous attention context incorporating each word of
the document: 𝑀=𝐴# . This summary maps encoding of question into
the space of context encodings.

We fuse the last two summaries to generate a co-dependent representation of
the question and the context:

𝑀# = 𝑄;	𝑀= 𝐴# ∈ ℝ%8	×(';"). After obtaining the fused representation, we
pass it through a bidirectional LSTM to obtain a sequence of encoding state ℎ,
defined as: ℎ) = 𝐵𝑖𝐿𝑆𝑇𝑀	(ℎ)2", ℎ);", [𝑐);𝑚)

#]). We concatenate ℎ)	at each
LSTM propagation to generate our final encoding 𝐻 = ℎ",⋯ , ℎ' ∈ ℝ%8	×'.
We then apply a dropout at the final encoding to prepare the knowledge
representation for the decoder.

3.2 Answer Pointer Decoder
First, we will give an overview on the sequence model to provide some
context on the Answer Pointer decoder. In a sequence model, the answer is
generated as a sequence of indices: 𝒂 = 	 𝑎", 𝑎%,⋯ ,	
𝑎 ∈ 	 [1, 𝑃 + 1]. Each index corresponds to the position of a selected token in
the original paragraph. 𝑃 + 1 is a special position that indicates the end of
the answer.

We want to obtain an attention weight vector, 𝛽 , where 𝛽\,] is the

probability of selecting the 𝑗)_ token from the context as the 𝑘)_ token in
the answer. 𝛽\,a;" gives the probability of stopping answer generation at
position 𝑘. We model 𝛽	as follows:

We first predict the distribution of the start position by computing: 𝐹c)de) =
tanh 𝐻𝑉 + 𝑏d , 𝛽c)de) 	= 𝐹c)de)𝑣h/)d + 𝑏h/)d, where 𝑉 ∈ ℝ%8×8	, 𝑏d, 𝑣h/)d, 𝑏h/)d
are parameters to be learned. 𝛽ci = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽c)de)) gives the normalized
distribution for the start position.

We then pass 𝛽c)de) to the following 𝐿𝑆𝑇𝑀: ℎc)de) = 𝐿𝑆𝑇𝑀	 𝛽c)de) for one
step. To calculate the distribution of the end position, we use: 	𝐹/0j =
tanh	(𝐻𝑉 + ℎc)de)𝑊d +	𝑏d) , 𝛽/0j = 𝐹/0j𝑣h/)d + 𝑏h/)d , where 𝑊d ∈
ℝ8×8, 𝑏d, 𝑏h/)d , are trainable variables. 𝛽/i = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽/0j) gives the
normalized distribution of the end position. To train the model, we minimize
the cross-entropy loss.

4 Experiments
We implemented and tested an assortment of model variants and then chose
the most robust one to improve by fine tuning model parameters. We
implemented the following 7 models, and further optimized a subset of them.
After evaluating the performance on these models, we decided to move
forward with the Coatt-LSTM and Coatt-Ans-Ptr models. See Table 1.

Table 1: Experiment Results

Encoder Decoder Optimization Performance % Conclusion
Coattention HMN - - Too expensive to train
Coattention Affine - F1 = 11.51,

EM = 8.59
Decoder is not expressive
enough

LSTM
(baseline)

LSTM
(baseline)

- F1 = 30.06,
EM = 21.09

Competent model. We need
to update the implementation
of the bias term

Coattention LSTM
(baseline)

- F1 = 46.80,
EM = 35.16

Competent model. We need
to implement dropout to
solve the overfitting issue

Match-LSTM Ans-Ptr - F1 = 39.65,
EM = 27.34

Training is very slow. Not
enough time for design space
exploration

Coattention LSTM
(baseline)

Dropout,
Sentinel Vector,
Flexible RNN
sequence length

F1 = 59.57,
EM = 48.44

Dropout is effective

Coattention Ans-Ptr Dropout,
Sentinel Vector,
Flexible RNN
sequence length

F1 = 68.92,
EM = 57.56

Best performance

We expected the LSTM baseline model to have a better performance after
training on all 20 epochs, so we went back to diagnose the system and we
found a problem with the bias term. We were initially using a bias term of
shape [1, max_paragraph_length, state_size], which gave the model excessive
degree of freedom during training by removing the state-specific contrast
from the bias term. Therefore, we updated the bias term to [1, 1, state_size]. In
retrospect, the earlier attempt with the affine decoder might also have been
impacted by this issue.

After updating the implementation of the bias term, we also introduced the
sentinel vector to the encoder. From observing the data set, we found the start
and end words could potentially be one of the low-frequency words, and the
sentinel will allow the model to address rare words more effectively from
relevant previous hidden states. We also added trainable null paddings to the
end of the question and context. Unlike the untrainable embeddings, these
paddings managed to capture information about the unseen words during
training. This optimization increased the training speed and performance
remarkable.

We also observed that the question and the context can vary significantly in
length. To further reduce the training time, we adopted flexible RNN sequence
length, which allows the runtime of encoding to be linearly correlated with the
length of the question or context.

Moreover, we noticed the evidence of overfitting after epoch 10 when the
divergence between training result and test result started increasing. We
suspected the overfitting problem can be resolved by introducing a 0.2
dropout into the model.

We also observed a linear decrease in the loss curve, which indicated a no
optimal learning rate. We later found that our current learning rate of 1e-3 is
not optimal for Adam Optimizer, and therefore we should adjust it to 1e-4.
Consequently, we decided to revisit the two models that had the potential to
reach desirable performance with the updated learning rate: (1) Coatt-LSTM,
and (2) Coatt-Ans-Ptr.

Figure 2 shows the training progress of the two models. Both models have
been optimized with the sentinel vector, dropout (at 0.2) and flexible RNN
sequence length.

Figure 2: Coatt-Ans-Ptr and Coatt-LSTM Model Training Curve

The most notable change was that the loss showed exponential decay over
training, which validated our previous assumption on the non-optimal learning
rate. Moreover, in both models gaps between the F1 scores on the validation
set and the development set are smaller comparing with the previous training.
By comparing the training statistics of the two models, we concluded that the
Coatt-Ans-Ptr has a better performance on the SQuAD task.

5 Results
Our model achieves 68.92% F1 and 57.56% EM on the SQuAD dataset, which
indicates the robustness of model quantitatively. We would like to give a brief
analysis on the predicted answers vs. the ground truth. We discovered that our
model performs the worst on the following three categories of
question-answer pairs:

1. Numbers. For example, our model completely failed answering a
question about percentage of bachelor degrees in US. We conclude that
our model is failing because our word embeddings do not handle
percentage numbers.

2. People’s names positioned closely in the context. For example, our
model is not able to tell the differences between “Zachary Taylor,
Ulysses S. Grant, William Howard Taft”. We hypothesize that our
model is confused by the similar correlations the three names resemble
to the rest of the context.

3. Answer with ambiguous boundaries. For example, in one QA pair, our
model predicted “5th century CE” while the ground truth is “5th

century”. The tiny difference still indicates the robustness of our model,
but it also shows that our model is not very sensitive on deciding when
to stop during decoding.

6 Conclusion
In this paper, we present an end-to-end MC system, in which we identify the
key components crucial to compressing and decompressing the information in
contexts and questions. Moreover, we manage to verify the potential of our
model through well-defined experiments. We observe that the gap between our
training and validation sets are reasonably narrow, which indicates the
robustness of our model.

In the future, we would like to improve our implementation from three
perspectives. First, we plan to explore more options with the architecture,
such as more expressive attention mechanisms, as well as decoders from other
sources. Second, we are also constrained by time in design parameters
exploration. We would like to experiment with more combinations of
hyperparameters to quantify their impacts individually on the training process.
Third, we would like to develop a more descriptive preprocessing script. We
observe that many of the provided words are rarely used, but they do exist in
the vocabulary and in the GloVe embeddings. We would like to prune away
these redundancies to improve the efficiency of our model.

References
[1] Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P. (2016) SQuAD: 100, 000+ Questions for Machine
Comprehension of Text. CoRR abs/1606.05250.

[2] Xiong, C., Zhong, V., Socher, R. (2016) Dynamic Coattention Networks For Question Answering.
CoRR abs/1611.01604.

[3] Wang, S., Jiang, J. (2016) Machine Comprehension Using Match-LSTM and Answer Pointer. CoRR
abs/1608.07905.

[4] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014) Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15
(2014) 1929-1958

[5] Merity, S., Xiong, C., Bradbury, J., Socher, R. (2016) Pointer Sentinel Mixture Models. CoRR
abs/1609.07843

