Codalab username: ajaffery

Modular Sequence Attention Mix Model

Kostya Sebov Ahmed Jaffery
Stanford University Stanford University
ksebov@stanford.edu ajafferv@stanford.edu

Abstract

Reading comprehension is an important area of NLP research. The SQuAD
dataset is a new dataset comprising 100k question-answer pair dataset that is
extracted from Wikipedia that formalizes this task. The goal is to accurately
extract the span of the answer directly from the context paragraph. Answers are
evaluated on an F1 and Exact Match (EM) metric. In this paper we explain our
experience implementing a Tensorflow model as a part of Stanford CS224N
course that strives to accomplish such task. As a derivative of 4 recently
published papers and implements it uses LSTM RNNs and various attention
mechanisms to learn the interaction of the query and context and then estimate
the starting and ending positions of the answer span.

1 Introduction

There have been many efforts to develop a fully encompassing NLP model that can accurately
understand what humans are saying, and how to respond accurately. In this aspect, reading
comprehension is a critical part of Natural Language Processing. Just as in humans, in order to
evaluate how well a system has understood what it has read, we must ask it questions and then
grade it based on the answer it returns. This is important because every statement can be viewed
as a question and answer system based on contextual references. This method could be used as a
universal way of testing a machines understanding of any text.

There are potential many ways the question/answer task can be specified. In our paper we use the
recently released SQuAD dataset that simplifies and formalizes the task. It is the largest
Question/Answer Dataset where each sample consists of a question that has high quality answer
that spans directly from the corresponding contextual document. This allows the system to learn
within reasonable constraints and not rely on outside knowledge for the answer, meaning that we
can much more accurately determine how well a system can understand a document. The SQuAD
team maintains an international competition site where any team may submit their work and be
compared against the others on their performance on a secret testing dataset based on exact match
(EM) of the answers as well as F1 score.

This paper describes our attempt to build an entry to such competition in the course of Stanford
¢s224n course. In order to build it we drew key ideas from several recently published papers that
all utilize Recurrent Neural Networks (RNN) to capture the numerical representations of the
Context document and the Questions then use various techniques to recombine them into a
common knowledge that is later analysed, often using RNNs as well, to generate the answer span
usually by predicting the its beginning and end positions in the Context.

mailto:ajaffery@stanford.edu

Codalab username: ajaffery

We will use the Tensorflow [10] framework, the SQuAD dataset for training, and the data helper
files provided by the CS224N Teaching Assistant team. Being novices in the field of Machine
Learning we encountered multiple obstacles, which we fought to overcome with various degrees
of success. In the paper we outline our major blocks and techniques we used to remove them.

The model source code is available at the following link:

https://gitlab.com/ksebov/su-cs224n/tree/master/assignment4/code

2 Background and Related Work
2.1 SQuAD Dataset

The Stanford Question Answering Dataset is a new reading comprehension dataset consisting of
questions posed by crowd workers on a set of Wikipedia articles. The answer to every question is
a segment of text, or span, directly from the corresponding reading passage. With 100,000+
question-answer pairs on 500+ articles, SQuAD is significantly larger and more accurate than
previous datasets.

Below is a distribution of the length (by word count) of the training dataset. The test set is hidden
and not released to the public for fair evaluation reasons.

Training Sample Count vs Context Length Training Sample Count vs Question Length
100K 60000
6000 o
1000
0 .||||| ||||||||| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0 I - — — —
10 40 70 100130 160 190 220 250 280 310340 370 400 430 460 490 530 560 650 10 20 30 40 50 60 70 80
Figure 1. Context length distribution Figure 2. Question length distribution

2.2 Related work

We drew our inspiration from the following 4 papers, most of which were listed in the CS224N
Assignment 4 specifications [??].

Along with the assignment itself, the Multi-Perspective Context Matching for Machine
Comprehension byt Zhiguo Wang et al. provided general outline of a typical attention-based
encoder-decoder model used in reading comprehension task.

Our encoder is based on Dynamic Coattention Networks For Question Answering by Caiming
Xiong et al. [S] and utilizes Bidirectional LSTM RNN whose hidden states for Context and
Question are recombined using affinity matrix.

Out decoder uses ideas from Bidirectional Attention Flow for Machine Comprehension by [1]
Minjoon Seo et al. [1] that employs multiple levels of RNNs capped with linear projection and
softmax classification to predict the beginning and end positions of the answer inside the context
paragraph.

Finally, we borrowed an interesting idea of using learned bilinear projection matrix to implement
flexible nature of the relationship between question and context words from the A Thorough

https://gitlab.com/ksebov/su-cs224n/tree/master/assignment4/code

Codalab username: ajaffery

Examination of the CNN/Daily Mail Reading Comprehension Task by Dangi Chen, et al. [6]

Our training set used a database of pre-trained word-vectors generated by method suggested in
the Glove: Global vectors for word representation by Jeffrey Pennington et al.[7]

3 Approach
33 Outline

Our model consist of the following layers:

| GloVe H Encoder | ‘ Knowledge H Decoder |
o/ [,.]LS™™ [= 1N
é_ [[R | % % %m »
Sl) wmm Yy Tof”R
[[B =3 ap/
O 74 _ I:II:I;I ‘ A e I ay
_ GRU
PR Qs 5
P \‘:_:g attention ‘\
Bilinear ‘4 h A 4 E—JRU - .
projection _{i % % = -
f o ca \ | P | a
/ affinity o _\ | () Matrix product mam #x #-. a
matrix ttention V[[IfIF] RNNhidden state []
‘ | / Bidirectional RNN Y1 Y] [
f%) E— ELSTM i:ly_llilﬁ H hidden state pair /
< T 'nmm "B (g sofmax 5 s |
1 EEE [normalization

Figure 3. Answer-GRU Model

3.3.1 GLoVe Pre - Processing Layer

This layer maps each word to a vector space based on pre-trained GLoVe word vectors to obtain
the word embeddings related to each word. g_vecfors will be the word embeddings for the
questions and ¢__vectors will be the embeddings for the context paragraph. Out-of-vocabulary
words were initialized with random vectors.

Max_c is a user selected parameter that is based on the dataset. This is chosen by creating a
histogram of context paragraph lengths, and choosing a length that covers 95% of the dataset.
Max_c is the maximum context length our model will process.

Let ¢, =max_cand q,,, =max_q
d x ¢,

d
SER ;¢ * e

SER

q vectors vectors

3.3.2 Context Embedding Layer
This layer is designed to model the temporal interactions between words. For the baseline, we run

a Bidirectional LSTM on both the ¢ and ¢ separately in order to read the context

paragraph and question both forwards and backwards. We then concatenate the forward and
backwards outputs from each time step and obtain D from the ¢ and Q fromthe q,,,,,,, -

vectors

vectors

D = BiLSTM(c,,,,,,) Q= BiLSTM(c
DERdecle" QERdeq]“"

VEC[U}”S)

Codalab username: ajaffery

3.3.3 Attention Layer

The attention layer is meant to link the context and question paragraph together in a meaningful
way. Similar to the co-attention calculation from C. Xiong et al. [5] and Seo et al. [1] we combine
the context and question paragraph.

The inputs to the layer are outputs from the context embedding layer, D and C. Here we calculate
our affinity matrix L which scores the correlation between every pair of context words and
question words.

L= DT'Q L € R%ier* Cien

We then normalize this by taking the softmax of L with respect to both Q and D separately to use
for our attention matrix calculation.

Ay = softmax(Lyw.r.t Q € R Clen® 4 1en
Apy = softmax(L) w.r.t D €RTier* “ler

Using AQ we calculate the attention of the context paragraph with respect to each word in the
question. Similarly using 4, we calculate the attention of the question with respect to each
word in the context paragraph.

Co=D4, 0O = concat(Q, CQ) Cp=A4y,0
3.3.4 Knowledge Layer

After computing the attention we calculate the final encoding: encoding = concat(D,C)

This allows us to correlate our attention matrix with the temporal data of the context paragraph
and provides an encoding for choosing which span in the context could be the best answer. This
encoding is the co-attention similar to C. Xiong et al. [5].

3.3.5 Decoder Layer

The decoder predicts a start and end answer index separately using 2 layers of GRU RNN,
followed by linear projection and softmax normalization. For pos € {start, end}

dpos = GRU (encoding)

predpos = bpas + d'Upos

probyes = (softmax(predy,s))
108805 = CE(prob,,s, onehot(answer,y))

Here both b, and U, are trainable vectors so the model can better learn sub phrases based on

the GRU output, CE is a cross-entropy metrics used to calculate the loss. We train the network to
minimize:
= loss

loss + loss,,,

total start

3.3.6 Prediction Layer
To generate resulting span we first attempt to use individual argmax:
result,o, = argmax(prob,s)

In cases where result

ware > Tesult,, , , the resulting we assume the result is one-word span at a

position:

result

start = resultend = argmax(prObstartPFObend)

Codalab username: ajaffery

4 Experiments

4.1 Construction

Building ML model of such complexity was a first-time experience for both of us so the process
proved to be quite challenging.

We used a starter code that tokenized context and question texts and converted it into files
containing lists of indices into a vocabulary of words corresponding to the above GloVe set.
Loading these files into Python variables was easy although in the process we discovered a bug
that generated many invalid ground truth answer spans where the start followed the end position.

The next step was the first major challenge-- implementing a basic Tensorflow model. Since we
both lacked practical experience, it took about a week to connect the dots and build trainable
graph from input placeholders to the loss and optimizer ops.

The first iteration used different classifier in the decoder. As suggested from the Assignment we
classified each word by a linear perceptron whether the word belonged to the answer span or not.
Unfortunately the model was quickly degenerating to conclude that there is no answer at all.

Professor Socher suggested we greatly simplify the model to remove complex attention and
replace it with simple 1-D weight modulation computed by cross-product value of the final
hidden state of question RNN and each given context state. Decoder was also replaced with
linear projection layer, followed by relu activation and 2 softmax classifiers. This produced first
model that could learn to overfit on small dataset.

Adding full attention including affinity matrices proved to be relatively simple so the encoder
was completed soon. However, expanding decoder proved to be the single biggest problem we
were eventually unable to overcome. Essentially, any layer of RNNs added in the decoder caused
the model to quickly stop learning and settle on high loss value even on miniscule data sets of
100 or 200. Since this is usually an indication of a bug in the model most of the efforts were
henceforth spent on debugging the model.

4.2 Debugging

In order to troubleshoot model’s underfitting we used the following approaches:

e Verified our variable-length softmax and matrix product calculation were correct. Actually
found and fixed a series of bugs.

e Verified that Encoder’s RNNs and Attention matrices contain correct data through careful
examination of intermediary model outputs, as well as Tensorboard summaries

e Verified gradient magnitude is within appropriate range (1..2) but implemented gradient
clipping just in case.

e Varied learning rate, implemented exponential learning rate annealing, even though Adam
optimizer is supposed to be self-adapting.

e Implemented concrete LSTM hidden state initialization using Xavier initializer

e Various ways to initialize bilinear projection matrix used in the attention layer

e Added/removed layers in Decoder, changed types (GRU and LSTM), uni- and bidirectional
RNNs

Unfortunately, we couldn’t get to the bottom of the issue and remove this fundamental problem.
4.3 Model Modularity

Because of various debugging scenarios we ended up implementing a toolkit that allows easy
re-configuration of the model. The following configuration parameters are available as command
line options for qa_model.py:

Codalab username: ajaffery

Cross Id Bias — coefficient for attention

matrix initialization

Concatenate Encoding — combine

encoding with LSTM decoding

Attention Components

o AD - Use context relevant
questions words in encoding

o AQ - Use question relevant
context words in encoding

RNN options include GRU, Bi-GRU, LSTM, Bi-LSTM

4.4

Parameter Selection

Available Hyper parameters:

4.5

Embedding Size — GLoVE embedding
vector size

RNN Size — size of each RNN layer
Max Q — Max context length

Evaluation Methods

Answer Start Decoder — Decoding
RNN for start index prediction

Answer End Decoder - Decoding RNN
for end index prediction

Decoder Start Layers — Number of RNN
layers for start decoder

Decoder End Layers — Number of RNN
layers for end decoder

Encoder RNN — RNN encoder

Max C — Max question length
Optimizer — Adam or SGD optimizer
Learning Rate — the step size for the
optimizer

We evaluate our model by measuring the decreasing of the loss and using the industry standard
F1 and EM score.

4.6

Experiment Trials

For all our experiments we used the Adam optimizer as it performs significantly better than a
basic SGD optimizer. D. Kingma et al.[7]. We also utilized exponential leamning rate.

All parameters except the bilinear projection matrix were initialized with standard Xavier
initializer based on parameters’ dimensionality. In order to speed-up initial attention learning the
projection matrix was initialized with a weighted sum of identity matrix controlled by a
hyperparameter and random uniform noise ranging from -0.01 and 0.01.

4.6.1 Baseline

For the baseline we used simple linear projection with softmax normalization and cross-entropy
loss to predict end position similar to (but separate from) the prediction of the start position. Here
are some highlights to show exaggerated effects of hyper parameter selection..

Trial Max_Q | Max_C Learning Rate RNN Size Embedding Size | Epochs Training Loss
1 200 100 .001 100 100 5 11.42

4 350 100 .001 200 300 5 4.26

5 300 80 .01 100 300 5 3.83

Table 1. Baseline-Concatenation Performance

The baseline would often plateau learning after about 4 epochs and the loss would stay above
3%. The two largest performance increases occurred from increasing the embedding size and
decreasing the learning rate. We also had a version of the baseline where we did not concatenate
the final decoding with the encoding. That version performed very poorly.

Codalab username: ajaffery

4.6.2 Final model

Trial Max_Q Max_C Learning Rate RNN Size Embedding Epochs Training Loss
Size

1 200 100 .001 200 300 7 3.83

2 350 100 .001 200 300 5 4.22

3 300 80 .001 100 300 10 2.52

Table 2. Answer-GRU Table

Running with an RNN size of 200 significantly slowed down training with minimal
improvements in training. Reducing the Max_q to 300 and the RNN size to 200 allowed the
network to train 10 epochs in the same amount of time as trial 2 took 5 epochs.

4.7 Figures and Tables

Mean Tramrg Lot Ower Epach Yalidation F1, EM and Trarweg Lods Ower Epachs |Arswes-GRU]

e ot e Figure 5. Villid‘sl"ti.‘lll‘l F1I'I-IM v training loss over
Figure 4. Comparison of mean training loss of epochs
Baseline vs Answers-GRLU

Model Data F1 EM Loss Epochs ‘

Baseline-Concatenation Dev 25.615 16.263 3.03 6
Answer-GRU Dev 26.126 16.831 2.57 7
Answer-GRU Test 26.684 17.098 2.57 7

DCN [5] Dev 75.6 65.4 N/A N/A
Table 3: SQuAD Evaluation Scores
Appeaimately ™ then
m | I L TR D
any 1803 L] A
Fremeh I l Froach Fronck Freach
ra— a— ey -
| b N
Charles I I Charies Charies Tk
” N " - ..
rhee bt Bl the
Hairk Harle hark: banl
“ I « w
Wagram Wagram Eaite much

a I I

Hzreom bs Wigher prababdiy

leawy cantingeecicy

Figure 6. Softmax predictions of context v.s. question. Top 3 context words are shown.

Codalab username: ajaffery

Context (answer in red) Question
A fler” the sethack at Asporn-Essling , Mapoloon ook more dhan six Avummlrldl.cly how ma ny French troops
wieks in planning and preparing for contingeneiss belone he made ek {:"lﬂr s at "'le Bﬂ“lﬂ I:rf Wﬂ!}lrﬂm ki
anather amemp & crosswg the Danbe . From 30 June o the esrly
devs of July . the French recrossed the Danube in sire h e
thar IR0, roops marching across the Marchifchd 4o ha

Highest Softmax Predictions

Aarstrzand , Charkis rinsenad :IIq,- Fririi: -:.nll- 150,000 i 180000
I the ensuing Bamke of Wagram , wisch also sl ™
Mapaleon cormmanded his forces in what was the largest haitke of his 150000
career up antil then . Reither side made much progress oo 5 July |, e
the Bih produced a definiive outcome . Both sades lamched major A0000
il - ks agntinat the Fresch lefl wing —
e demgerous init
Memuhile , a steady French <1 the Austnan left wing all
eventually compromised the ook or Charkes . Mapolvon
Finished ofT the Banle with o ¢or central st that steady
punctured & hole in the Awserion any and foreed Charkes i retrent aver
Austrian losses were very heavy , reaching well over 40,000
cashies . The French wen: too exhausted wo pursue the Ausirians iix
iy , bt Maplece evenndly casght up with Charks m
Znaim and the |ater signed an anmistice on 12 July . Wo
caught

Figure 7. Final softmax to determine answer

5 Conclusion

Using Tensorflow and building even basic models proved to be more difficult than expected.
With little experience in this framework, debugging was a challenge. Due to these setback we
were not able to build heavily upon the basic foundations of our model and utilize the full
modularity that had been implemented. Adding RNN layers to the decoder significantly
increased training time. Using only an RNN for start and end span classification prevented
overfitting to a small dev set. Our model was slower to train than many others, however we were
able to see the training loss slowly go down over time which means that we did not reach a
convergence point necessarily.

It was a somewhat painful but nevertheless extremely valuable experience. We’re excited to
realize that after these 2 weeks we are capable of much better understanding of tools and methods
of Machine Learning in general and NLP in particular. On the other hand, there is definitely a lot
more to be learned and we are both eagerly looking forward to mastering this knowledge.

6 Contributions

e Kostya Sebov — Created working Tensorflow model and experimented with many different
implementations. Debugged code and made the model highly modular. Managed code
merges. Finalized poster and paper. Spent around 180 hours.

e Ahmed Jaffery - Created saving/reload, tensor-board, and evaluation/validation
functionality for the model. Attempted to implement the provided baseline. Filled out
ga_answer.py script for submission. Handled Codalab submissions. Created first pass of
poster and wrote the paper. Spent around 160 hours.

e We both ran the training on our separate Azure instances as well as my personal desktop.
This allowed us to test out more models and better tune hyper parameters and eventually find
something that worked for us.

Codalab username: ajaffery

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2016. Bidirectional Attention
Flow for Machine Comprehension. arXiv eprint arXiv:1611.01603.

[2] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching Machines to Read and Comprehend. arXiv eprint arXiv:1506.03340.

[3] Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. 2016. Multi-Perspective Context Matching for
Machine Comprehension. arXiv eprint arXiv:1612.04211.

[4] Shuohang Wang, and Jing Jiang. 2016. Machine Comprehension Using Match-LSTM and Answer Pointer.
arXiv eprint arXiv:1608.07905.

[5] Caiming Xiong, Victor Zhong, and Richard Socher. 2016. Dynamic Coattention Networks For Question
Answering. arXiv eprint arXiv:1611.01604

[6] Dangi Chen, Jason Bolton, Christopher D. Manning. 2016. A Thorough Examination of the CNN/Daily
Mail Reading Comprehension Task. arXiv eprint arXiv:1606.02858

[7] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, 2014.

[8] Christopher D Manning, and Richard Socher. 2017. CS 224N: Assignment #4: Reading Comprehension
Stanford CS224N

[9] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[10] Google Research. 2017. Tensorflow. www.tensorflow.org.

