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1 Introduction

Machine comprehension of text is a significant problem in natural language processing today —
in this project, we tackle machine reading comprehension as applied to question answering. Our
goal is: given a question and a context paragraph, to extract from the paragraph the answer to
the question.

As an oracle, on the dataset we used, humans score over 86.8% accuracy (EM) on the test
set for this task, while the best models only achieve roughly 75%. Existing approaches to this
extractive Question Answering problem typically involve an encoding layer that encodes the
question and paragraph into a sequence, some additional layer that accounts for interaction
between the question and paragraph, and a final decoding layer that extracts the answer from
the paragraph [2][3][4][7]. In this paper, we will follow a similar structure, using LSTMs in our
encoding and decoding layers, and calculating attention as our interaction layer.

2 Dataset

The dataset used is the recently released Stanford Question Answering Dataset (SQuAD)[1].
The context paragraphs are extracted from Wikipedia, while questions and answers are human-
generated. It consists of around 100K <question, paragraph, answer> triples. For our models,
we will represent each question and paragraph as a list of IDs corresponding to each word, then
use GloVe embeddings to represent each word as a word vector, and each answer as a span
(start, end), marking its start and end indices in the context paragraph. We use a pre-split
train set to train our models, and the leftover validation set to tune our parameters.
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Figure 1: Histogram of Question, Paragraph, and Answer lengths in train dataset

From an initial histogram of our training data, we determined that the large majority of
paragraph lengths were below 300 words, and all question lengths were below 70 words. Thus
we simply excluded input paragraphs longer than 300 words in our training and validating steps.



3 Approach / Model Formulation

For this task, we implemented two main models. We started with a baseline of a sequence atten-
tion mix model. We then implemented Match-LSTM with answer pointer, adapted from Wang
& Jiang, 2016 [3]. Finally, we improved upon the original Match-LSTM model by exploring the
use of BiLSTMSs in the preprocessing layer and different amounts of dropout regularization and
hyperparameter tuning.

3.1 Baseline: Sequence Attention Mix

For our baseline, we implemented a three-layer model that utilizes the coattention mechanism
described in [6] to encode the question vectors. We give a detailed description of our method
below.

BiLSTM Preprocessing Layer

The BiLSTM preprocessing layer incorporates contextual information into the representation
of each token in the question and the paragraph. We use a standard bidirectional LSTM to
process the question and the paragraph separately, as shown below.

H? = LSTM(P) and HY = LSTM(Q)

Coattention Layer

This layer incorporates a coattention mechanism that simultaneously attends to the question and
the paragraph. We first compute the affinity matrix, which contains affinity scores corresponding
to all pairs of question and paragraph words. This is normalized to produce the attention weights
A across the paragraph for each word in the question.

A= softmaz(P-QT)

Using the affinity matrix, we then compute attention contexts of the question in light of each
word of the paragraph.
cP=4.-Q

We mix the attention context with P using a linear layer to attain the final encoded represen-
tation.

Pz = [CT;PIW +b

Dynamic Decoding Layer
The decoding layer uses the output from the first two time steps of an LSTM to predict the
probability distributions for the start and end indices of the answer, respectively.

s
a = sz‘r W1

a® = LSTM(Pmm)Wl,

3.2 Match-LSTM with Answer Pointer

Iterating upon our baseline, we implemented the match-LSTM with answer pointer model from
Wang & Jiang, 2016 [3]. This model incorporates a more complex coattention mechanism, as
well as a novel decoder. The Pointer Network model used for decoding is optimal for our task,
since it is built for the specific task of generating an output sequence with elements that are
discrete tokens corresponding to positions in the input sequence.
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Figure 2: Diagram of Match-LSTM model layers

LSTM Preprocessing Layer
The preprocessing layer is the same as the one in the baseline above, except we use a standard
one-directional LSTM rather than a bidirectional LSTM.

HP = LSTM(P) and HY = LSTM(Q)

Match-LSTM Layer

The purpose of the Match-LSTM layer is to encode the paragraph vectors with the backward
and forward paragraph contexts as well as attention weighted representations of the question.
We use the same match-LSTM model proposed by [5] and applied in [3].

We build an LSTM cell that takes as input a token of the paragraph and does the following.
First, we compute attention weight vectors corresponding to the degree of matching between
the paragraph token and the question. We use this weight to obtain a weighted version of the
question and combine it with the paragraph token to form a vector 7

G, = tanh(W9HI + (WPR! + W'R, +b) 0 )
o, = soﬁmax(wTa,; +b®eq).
h?
7= ]
This LSTM cell is used to run a bidirectional LSTM for |P| time steps. We concatenate the

forward and backward LSTM outputs to produce the final encoded representation:

- — —
hi = LSTM(Z;, hl_,).
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Answer Pointer Decoding Layer

The answer pointer model adds significant complexity to the decoding layer. It uses an atten-
tion mechanism to generate output consisting of tokens from P. We implement the boundary
model as specified in [3], which predicts the indices within the paragraph of the start and end
tokens of the answer.

We use the attention mechanism again to produce the attention vectors s and S.. These
are probability distributions where 3 ; and 3 ; are the probabilities of selecting token j of the
paragraph as the start and end tokens of the answer, respectively. We calculate 8 by retrieving
the outputs from the first two time steps of the following LSTM:

Fr = tanh(VH 4 (W°hi_, +b%) ® eps1)).
Br = softmax(vTF; +c® epir))
% = LSTM(FT'A] b))

3.3 Model Extensions, Regularization, and Hyperparameter Tuning

The preprocessing layer in the Wang & Jiang, 2016 Match-LSTM model [3] encodes both the
question and paragraph using a forwards LSTM to create H? and H? for the Match-LSTM layer.
We extend the pre-processing layer for both question and paragraph to encode hidden states in

both directions with a bi-directional LSTM and concatenate the hidden states: H, = {%] and

q

H, = [%] before passing into the Match-LSTM model. This allows the pre-processed question
P
and paragraph representations to capture information from both directions.

Our original Match-LSTM implementation had no regularization and suffered from overfit-
ting, as our performance dropped from 81% F1 and 66% EM on the train set to 61% F1 and
51% EM on the validation set. To address this problem, we considered adding Dropout and L2-
regularization to our model. Based on our experimentation and existing literature on machine
comprehension, we chose to apply a Dropout of 0.2 to all LSTM layers in the encoder with no
L2-regularization to regularize our model.

We then tuned our hyperparameters to achieve better performance. Our original implemen-
tations had been trained with the Adam optimizer, and we explore the use of the Adamax
optimizer. We further experimented with varying batch sizes, hidden state sizes, and gradient
clipping values and trained our final model with batch size 30, state size 100, and a gradient
clipping value of 5.

3.4 Evaluation

We mainly used two metrics to evaluate our model: F1 and EM.

F1 roughly measures the average overlap (over all questions) between the prediction and ground
truth answer. We treat the prediction and ground truth as bags of tokens for these calculations.
F1 is the harmonic mean of precision and recall, which can be calculated as

Fl—ax Precision x Recall

Precision + Recall

EM (exact match) measures the percentage of predictions that match the ground truth answer
exactly.



4 Results
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Figure 3: Comparison of model validation cost curves
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Figure 5: Comparison of model results on validation set



Model F1 | EM
Baseline (validation set) 249 | 16
Match-LSTM (train set) 81.3 | 66
Match-LSTM (validation set) 61.0 | 51
Match-LSTM (dev set) 53.7 | 40
Match-LSTM (test set) 54.0 | 41
Final Match-LSTM (train set) 73.0 | 59
Final Match-LSTM (validation set) | 64.3 | 45
Final Match-LSTM (dev set) 54.0 | 40
Final Match-LSTM (test set) 54.6 | 42

Table 1: Comparison of model best performances

4.1 Model Analysis

Our implementation of the Match-LSTM model greatly out-performed our attention-mix base-
line. We attribute this largely due to the more powerful attention model in Match-LSTM,
by sequentially aggregating backward and forward paragraph contexts with attention weighted
representations of the question and Answer Pointer layer. Our Final Match-LSTM model, using
Bi-LSTMs for the paragraph and question preprocess encodings, regularization, hyperparam-
eter tuning, and the ADAMAX optimizer outperformed our initial implementation by 1% F1
and 1% EM on the test set. However, as shown in Figure 6, the F1 and EM scores of our
final Match-LSTM model are still increasing with every epoch while those of our original im-
plementation peaked at Epoch 7, indicating that our final Match-LSTM scores could be further
improved with more training time. Using Bi-LSTMs for the paragraph and question preprocess
encodings may not have greatly impacted performance, since the Match-LSTM layer already
encodes the paragraph contexts with forward and backward LSTMs and uses the entire weighted
representation of the question in the attention calculations. Adding dropout helped significantly
with overfitting, particularly with the F1 score: there was a drop of 20% F1 between training
and validation for our original implementation, but only a drop of 8% F1 between training and
validation. This contributed to higher validation and test scores, and further increasing the
amount of dropout could improve our score on the test set. All of our models saw a significant
drop in performance between the validation set scores and the test set scores, of 8 - 10 % F1 and
5-10 % EM. Our embeddings have been trimmed to those in the training set and validation
set, which resulted in a lot of unknown tokens in the dev set and test set, and this could have
been a major source of error on the dev and test sets.

4.2 Error Analysis

Our model was able to successfully predict some surprisingly complex answers:

Paragraph: While experimenting, Tesla inadvertently faulted a power station generator, caus-
ing a power outage...which caused heavy sparks to jump through the windings and destroy the
insulation!” (parts omitted here to save space)

Question (1): What did the sparks do to the insulation?

Answer: jump through the windings and destroy the insulation

Figure 6 shows our model’s fitted probabilities of each paragraph index as a start answer
(blue points) or an end answer (green points). The red and black vertical lines indicate the
final predicted start and end indices, respectively. We can see that the model is much more
confident in its results for the simple Question (2), as the final predicted indices have much
higher probabilities than the rest, than the more complex Question (1), where many points are
close to the final indices.
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Figure 6: Probability distribution for Questions (1) and (2)

Unsurprisingly, the vast majority of our model’s correct answers were simple questions with
simple answers, such as the following;:
Paragraph: ...The American Football Conference (AFC) champion Denver Broncos defeated
the National Football Conference (NFC) champion Carolina Panthers 24-10 to earn their third
Super Bowl title. The game was played on February 7, 2016, at Levi’s Stadium...
Question (2): What day was the game played on?
Answer: February 7, 2016
Question (3): What team was the NFC champion?
Answer: Carolina Panthers

Interestingly, using the same paragraph with a slightly different question gave a wrong result:
Question (4): What team was the AFC champion?

Answer: Carolina Panthers
True Answer: Denver Broncos

A possible explanation for this is that, when running our initial LSTM to calculate the
question encoding, we place heavier emphasis on later tokens in the question. In this case, this
emphasizes “champion” over the specific conference title (AFC or NFC), so we again predict
“Carolina Panthers”. These types of errors happened fairly often, suggesting that our final
model could be improved by using a more advanced coattention mechanism.

Two other common errors we ran into were 1) seeing or predicting words that were not in
our training or validation datasets, and 2) predicting a start index greater than our end index:
Question (5): Who was the first quarterback to take two teams to more than one Super Bowl?
Answer: <unk> <unk>
True Answer: Peyton Manning
Since neither of the tokens “Peyton” or “Manning” had been seen previously, our model pre-
dicted <unknown> for both. The first error should be fixed by training on the full GLoVE
vectors, instead of the trimmed vocabulary. The second error we could fix by forcing the model
to choose the next-best index until we have a valid end index.

Our exact-match metric was also not very forgiving of small differences in output. For
example, we counted as wrong:

Question (6): Whose works helped Tesla recover from illness?
Answer: Mark Twain’s
True Answer: Mark Twain
We could relax our evaluation metric to account for this.
Finally, there were some errors where our predicted answer was technically different from
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Figure 7: Probability distribution for Question (4)-dots and invalid indices-crosses. Note the
incorrect start index (red line) to the right of its corresponding end index (black line), and that
the maximum probability indices have much closer neighbors than in our correct predictions.

the true answer, but in meaning almost the same:

Paragraph: ...Controlled, experimental studies exploring intrinsic motivation of college students
has shown that nonverbal expressions of enthusiasm, such as demonstrative gesturing, dramatic
movements which are varied, and emotional facial expressions, result in college students report-
ing higher levels of intrinsic motivation to learn...

Question (7): What is dramatic gesturing an example of?

Answer: emotional facial expressions

True Answer: nonverbal expressions of enthusiasm

These two responses seem very close, even to a human reader — these errors are very exciting
indicators of comprehension, but also show the difficulty of building a more nuanced model to
capture these differences.

5 Conclusion and Future Work

Overall, our implementation of the adapted Match-LSTM model attains 54.6 % F1 and 42%
EM scores on the test set, improving upon the Logistic Regression baseline [8]. The original
Wang & Jiang, 2016 Match-LSTM model [3] attains 73.7 % F1 and 64.7 % EM on the test
set, which indicates that our Match-LSTM implementation could be improved through more
extensive hyperparameter tuning, longer training time, using full word embeddings, and addi-
tional investigation of our model and preprocessing. Moreover, we could further improve our
test scores through implementing multiple different models and ensembling. This Match-LSTM
model has been effective for textual entailment and machine comprehension, and we are inter-
ested in investigating other applications of the model. In addition, we would like to investigate
other models that out-perform Match-LSTM, like the BiDAF model [7] and its memory-less
attention mechanism, and how these insights can be applied to new machince comprehension
models and data sets.



References

1]

2]

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe. FastQA: A Simple and Efficient Neural
Architecture for Question Answering. arXiv preprint arXiv:1703.04816, 2017.

Shuohang Wang and Jing Jiang. Machine comprehension using match-Istm and answer
pointer. arXiv preprint arXiv:1608.07905, 2016.

Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for
natural language sentences. arXiv preprint arXiv:1702.03814, 2017.

Shuohang Wang and Jing Jiang. Learning natural language inference with LSTM. In Pro-
ceedings of the Conference on the North American Chapter of the Association for Compu-
tational Linguistics, 2016.

Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for ques-
tion answering. arXiv preprint arXiv:1611.01604, 2016.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C
Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In ICCV, 2015.



	Introduction
	Dataset
	Approach / Model Formulation
	Baseline: Sequence Attention Mix
	Match-LSTM with Answer Pointer
	Model Extensions, Regularization, and Hyperparameter Tuning
	Evaluation

	Results
	Model Analysis
	Error Analysis

	Conclusion and Future Work

