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        Abstract 

In the context of media search engines where assets have small textual data             
available, we explore several models that improve the learning to rank use cases.             
In particular, we propose a model with an attention mechanism that leverages            
phrase-based attributes to guide the importance of other keyword-based         
attributes. We train these models with clickthrough data from Adobe Stock           
search queries and we evaluate them using various ranking metrics. Preliminary           
results show that our proposed methods have the potential of significantly           
improve ranking results. 

 

1 Introduction and Background 
With the advent of massive proliferation of images and media in general, searching for images has                
become an important task for search engines. Users expect typing a few words and finding the                
documents they are looking for. In the case of media, this use case is harder than searching for                  
documents of plain text. Indeed, images, and media in general, have very few attributes associated               
with them. There is usually some short text like a caption or a title and also other attributes like                   
tags or language used. 

By looking at the clickthrough data from the search results, relevance of results can be               
substantially improved [1]. By using a variety of signals such as image popularity, whether there               
is a title, the number of tags, etc. and, using techniques like SVM ranking [4] to assign weights to                   
these signals, a search engine can use these signals at query time to boost the results for relevance.                  
Because of the expectation for search engines to return results within 100ms, more expensive              
approaches to ranking are only possible within a two-stage approach where. First, an initial query               
search is performed that uses the offline ranking weights, and then a second, more expensive               
ranking, is done in a window on the top results of the first query using learning to rank methods.  

An alternative approach to help users find images is to look into the image itself by identifying                 
what is on the image and let the user query with an existing image to find similar images.                  
Convolutional neural networks (CNN) have been trained to associate a feature vector with the              
images and use nearest neighbor (NN) search methods [2] to find the most similar images. That is,                 
at query time a CNN feature vector is calculated for the query image and then using NN                 
techniques such as product quantization compare the query feature vector efficiently with            
pre-trained codes associated with the feature vectors of the images in the corpus. 

More recently, a combined approach for learning to rank using deep learned feature vectors              
(CNNs) has been applied in the domain of text search [3]. Using pre-trained embeddings              
associated with terms in the query and the documents, separate sentence matrices are constructed              

 



where convolutional feature maps are derived to train a network with question and answering data               
to derive ranking data for text retrieval. In principle, this method can be used in the second stage                  
ranking and in an analogous manner to image similarity use NN methods to rank for the most                 
relevant results.  

In the context of media search, the question is whether deep learning learn-to-rank techniques can               
help for search relevance when using clickthrough data using the few keywords within the query               
and potentially the very short text associated with the media and additional textual features present               
such as tags. Here, we describe a set of models exploring this question where we learn                
representations of the query as well as for the media textual attributes so that when matched with                 
each other we end up with a score that can be used in a second-stage learn-to-rank retrieval. The                  
models we consider go from a simple model where we learn the embeddings of the query and the                  
media attributes to a more complex model where we use the short text associated with the media                 
to guide the representation of the media attributes and come up with a combined deep               
representation of the media for comparison with the query’s.  

Even with the two-phase query approach, there is a strict limitation on the amount of computation                
that can be devoted to evaluating each candidate result together with the query. The actual               
comparison between the query and the candidate representation has to be very simple and efficient               
and following the work of NN techniques, we assume that the actual computation per candidate at                
query time can be at most something equivalent to the cosine distance or a dot product. But, we                  
can spend computationally some effort in deriving a query representation at query time given that               
it is done just once, and on the candidate result side, we assume that we can pre-calculate offline                  
their representation, so we could build complex models. 

 
2 Models 
Figure 2 shows a diagram of the models considered. Our models follow the siamese architecture               
where the query flows in the left side, while the candidate results flows through the right side.                 
Both sides produce a feature vector that are then compared with each other using the dot product                 
to produce a score. There are 3 models we consider: a simple ​baseline model, the ​GRU-Query                
model where the query side is more complex and the ​Attentive-Attributes where an attention              
mechanism is used on the candidate results side.  

2.1 Query-side 

In the query side, for the simple ​baseline ​model, we just sum up the embeddings of the terms in                   
the query while for the more complex models, ​GRU-Query and ​Attentive-Attributes ​, we use a              
recurrent neural network (RNN) and more specifically a GRU[6], which we feed with embeddings              
of the query terms. Indeed, we want the model to learn a representation of the query that takes into                   
account the sequence of the terms. For example, we want the network to distinguish a query like                 
“snow white” from that one of “white snow”.  

2.2 Candidate-results-side 

On the candidate results side, for the ​baseline and ​GRU-Query models, we just add up the                
weighted embeddings associated with the tags. For the ​Attentive-Attributes model, we want to             
leverage the more targeted semantic coherence of the title (or potentially a caption) to guide               
(through an attention mechanism similar to [7]) the additional attributes like tags. Tags (as well as                
other attributes) are not sequential and but contain additional information where not all is very               
relevant. So, the attention mechanism focuses the importance of the tags based on the more               
coherent text of the tile. 

2.3 Attentive-Attributes Model 

In the ​Attentive-Attributes model, we use a GRU for the attributes that have phrases or sentences                
like the title in Figure 1: “Woman and little girl eating at kitchen”. Titles tend to be short but there                    

 



are still meaningful sequences and we want our model to represent them. Textual attributes like               
tags, they are usually narrow meaningful terms, but the order is less important. Also, the degree to                 
which each tag is useful is not apparent. In Figure 1 for example, the tags “residential” or                 
“ordinary” are peripherally important. the ​Attentive-Attributes model uses the output states of            
the title GRUs with an attention mechanism similar to [7] to weigh in each tag. Then, these                 
weighted tags are max pooled to produce an aggregate representation of the tags. We concatenate               
the title and the tags and use this feature vector to compare with the query. In order to match both                    
representations, we multiply the concatenated vector by an interaction matrix. 

More in detail, similarly to [7] and [9], if is the matrix of hidden states of the title, and is an         H           J   
interaction matrix between tags and titles and is the matrix that holds the tags embeddings, then       T          
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representing the tags. This vector is then concatenated with the output of the GRUs corresponding               
to the title and used as representation for the candidate result. 

2.4 Positive-Negative Pathways 

Our models are trained using a margin-loss where, as illustrated in Figure 3,  the inputs to the 
model are on the one hand the query on the query side, and on the candidate results side, we have 
the positive (+) pathway with a stack corresponding to the inputs for the clicked image and the 
negative pathway (-) corresponding to the impression (i.e., an image that the user saw but did not 
click). In order for the error to back-propagate correctly, care has to be taken to make sure that the 
parameters for the stacks of the positive and negative pathways are tied (i.e., the same).  

 
3 Related Work 
As mentioned above, we follow the general approach described in [3]. That is, we have two                
separate flows, one for the query and one for the candidate results. However, in [3], they use a                  
CNN on the sentence matrix induced by the embeddings of the terms in the query and in the                  
document. In our case, that approach makes sense for the query, but not for the candidate result.                 
Also, in [3], the comparison of the query and the document are more complex with a hidden layer                  
between the score and the join layer. That adds computational complexity. 

The DRMM model in [8] adds much more interaction between the query and the document and in                 
addition, it has a fixed-length histogram mapping layer before feeding the results into a feed               
forward matching network and then to score aggregation with a term gating network to derive the                
final score. We do away from the local interaction between the query and the document and stick                 
with the siamese architecture over the query and the candidate results. However, their term gating               
network is similar to our attention mechanism in that it helps focus the terms in the document                 
using the terms in the query.  

Our model is closer to [9] in that their model uses an RNN (a biLSTM) for both the question and                    
answer and also their attention mechanism is almost the same as ours as well as that one in [7]. In                    
their case, they use the intermediate states of the question RNN to provide context for the answer                 
RNN. In our case, we use the intermediary states of the title RNN to provide context for the tags.                   
We also do a column-wise max-pooling to come up with the tag weights while [9] uses both                 
column-wise and row-wise pooling to come up with weights for both the question and the answer.                
However, the difference in approach between [9] and our approach is that we keep the interaction                

 



of the query side and the candidate result side very simple for query-time computational              
efficiency, while [9] do not focus on that. 

The model in [10], their model LSTM-DSSM derived from earlier work on Deep Structured              
Semantic Model (DSSM), use LSTMs both for the query and for the document to derive a deeply                 
learned representation that is sensitive to the sequence of the query and the document so that at                 
query time, they can be compared much like our model. Also, like our model, it is trained with                  
click data with a positive pathway (clicked image) and a negative pathway (impression) and the               
error has to be correctly propagated to the query, while the parameters of the RNN for both of the                   
positive and the negative pathway are tied. 

 
4 Approach 
To evaluate the merit of the various models, we trained each model with a large dataset from                 
search queries from Adobe Stock, a service used to license high quality images. For each model,                
we first conducted a hyper-parameter search on a dataset of 1M samples, and evaluated it using                
error rate to find the best parameter values. We define the ​error rate​, as the ratio of the number of                    
times the clicked image (+) score is lower than impression image score (-) and we use this metric                  
for both the training and validation phase. After having found a good set of hyper-parameters, we                
use these to train on a larger dataset of 16M samples for each model. Finally, with these trained                  
models, we perform our test evaluation with a different 1M dataset using a different metric: the                
relative weight calculated by an SVM ranker[4]. This metric is used to evaluate internally ranking               
features in production of the Adobe Stock service. More details on this is in section 5.1  

Because we have a large training dataset, we thought it would be better to train our models                 
together with the query, tags and titles embeddings as opposed to use pre-trained embeddings. We               
leave the last row of the embedding matrix to be all 0s, so that when summing up the row vectors                    
doesn’t affect the sum values. As we mentioned in previous sections, we use max margin for                
calculating the loss. For the ​GRU-Query and ​Attentive-Attributes models we use dropout and             
L-2 regularization to prevent overfitting. We also found that gradient norm stayed small, so there               
is no need for gradient clipping..  

 
5 Experiments 
 
5.1 Dataset 

The Adobe Stock service, has over 70M+ images which contain titles, tags, and a myriad other                
attributes like category etc. The 100M data record collected correspond to user queries, produced              
over two years ago from the ​www.fotolia.com service. Each data record is composed of a user                1

query, the title and tags for the clicked image and the title and tags for one of the impressions of                    
the corresponding query. Our dataset had already being pre-processed where terms had already             
being converted to indices using a ‘pivot table’, a mapping from about 1.7m words to 40k english                 
terms. This is a limitation on the dataset given that the pivot table was curated rather than learnt.                  
More on this issue will be discussed in section 6. 

The 1M and 16M datasets were sampled from the 100M records. During batch training, we pad                
query, tags, and titles to maximum lengths of 6, 20 and 50 respectively. Their distribution charts                
can be seen below figure 4, 5 and 6. We believe The maximum pad lengths we choose will help to                    
cover the cases for most training data while not wasting too much training time on tail rare cases.                  
As mentioned in section 4, instead of applying mask at the end of the padded vectors, we just                  
make the last row of embedding matrix to be zero and sum up row vectors to form vector                  
representations of a query, tag or title. 

1 fotolia was later acquired by Adobe Corp. 

 



For the final tests, we use an internally deployed SVM ranker for evaluation. The SVM ranker                
currently trains on 250 features to calculate an offline relevance score for each image. For each                
feature, it assigns a weight that effectively indicates the feature importance. We include the scores               
predicted by our model as an additional 251st feature and train the SVM ranker with the modified                 
dataset to determine the weight assigned to our feature. The larger the weight, the more important                
the ranker considers it is. The dataset used during this test evaluation comes from search queries                
taken from ​www.stock.adobe.com during the month of Oct, 2016, and of 1M data records, roughly               
corresponds to about 26K queries, sampled from evaluation dataset of 70M with 270K queries.  

5.2 Parameter Search 

We first conduct hyper-parameter search on a small data set of 1M for training and 50k on dev,                  
sampled from the total 100M as mentioned in 5.1. The final tuned hyper-parameters are listed in                
Table 1. For the ​baseline and ​GRU-Query models, we did a random parameter search with a                
fixed range. For the ​Attentive-Attributes model, we did a random search the parameters from a               
pre-defined lists of values chosen at different scales. All models are run for 10 epochs for each                 
random set. 

For the ​Attentive-Attributes model we run about 100+ random search sets. For a given              
hyper-parameter, we expect to have about 10+ sets runs with a particular value. In order to get a                  
sense of the effect on each hyper-parameter on the model, we averaged across the observations the                
smallest error during training and dev phases and the epoch where the smallest dev error occurred.  

 

 embed 
size 

hidden 
size 

lr adam 
beta1 

dropout margin l2 
beta 

baseline 391 n/a 0.00158 0.29 n/a 0.426 n/a 

GRU Query 273 167 0.00102 0.811 0.438 0.144 0.961 

Attentive-Attributes 512 512 0.00001 0.95 0.5 0.2 0.0001 

Table 1​: Hyperparameters. embed_size: learnt word embedding size; hidden_size: GRU hidden           
unit size; lr: learning rate; adam_beta1: the exponential decay rate for the 1st moment estimate;               
dropout: dropout keeping rate; margin: a constant in loss function; l2_beta: L2 normalization 

5.3 Results 

Figure 7 and 8 shows how model error rate changes depending on the different learning rate (lr)                 
and margin in the ​Attentive-Attributes model. We conducted this analysis for all the various              
hyper-parameters though only the margin and lr are shown below. Learning rate we chose for               
Attentive-Attributes model was ​0.00001, because at this point the dev error rate is relatively low and                
the epoch is high showing that it was probably not overfitting with these settings. We want small                 
difference between train and dev error to prevent overfitting, however we also want high epoch               
showing that the model takes its time to keep on learning. Likewise, margin within 0.2 is a                 
reasonable compromise where the epoch is high with a relatively low dev and training error.               
Another reason we focused on values that have a larger epoch is that because the               
Attentive-Attributes is a complex model, when being trained with the 16M dataset, we did not               
want it to get stuck in a local minima too early on. The hyper-parameters shown in Table 1 reflects                   
this compromise of having on average larger epoch number with comparatively lower dev error. 

Figure 9 shows the error rate by model and data size. Larger data shows better results. However,                 
we obtain the unexpected results that baseline performs best, based on validation dataset. It looks               
like the more complex the model, the bigger error we get. We will further discuss the implications                 
of this in section 6..  

 



On SVM ranker production test, we achieve very promising results. Table 2 shows the top 5 ranks                 
for the SVM calculated weight. Again, the larger dataset performs better than the small dataset. In                
1M, our weights, 0.239 and 0.27, rank 3rd place out of 251 features; in 16M, our weights, 0.429                  
and 0.412, rank 1st place. With 16M, However, baseline receives the best weight again.              
Unfortunately, due to the time constraint and model complexity, we haven’t finished SVM testing              
part for the final model at the submission time of the paper. 

 

            Table2: SVM top five weights out of 251 features 

5.4 Demo 

For the ​baseline​, we loaded the data into a search service to visualize the effects of the rescoring                  
results. The current system has a hard time to deal with queries that match the query terms but                  
may have alternative partial meanings. Figure 10 shows a query where this is the case. The query                 
“gold bowl” fails because titles like “Gold fish bowl”, “Golden retriever with a bowl”, “Gold               
colored wheat bowl” partially match the query terms. When we turn the rescoring resulting from               
our trained model, we can see that the results look much better.  

 
6 Conclusion 

All three of our models improve the ranking score of Adobe Stock, which already produces good                
results even though the training data was from an older (2 year old) version of the system. All of                   
them reduce the error rate and produce large SVM weight and a good rank. A caveat though is that                   
we only tested the SVM ranker with a smaller 1M dataset out of a larger 70M data set.  

As mentioned in 5.1, our training data used a ‘pivot table’, a curated dictionary, to translate                
non-english words to english and then look up in vocabulary table. The pivot table does just a                 
keyword lookup , which introduces errors in translation, thus creating noise in the data. Also, the                
training and test data are not quite the same quality.  

Even though the baseline model performed better, we suspect that the more complicated models              
would fare much better with bigger datasets. Due to limitation on time and Azure resources, we                
only trained with the 16M dataset, but we believe that longer training times and using the bigger                 
100M dataset may prove that the more complicated models do perform best. 

Going forward, we will use most update data for training so that train and test data are of same                   
quality. We will enlarge the train and test data size to 100M+ and 70M respectively. 70M is the                  
current production test size. We want also to mix the textual features with the visual features to                 
create a multi-modal model. Lastly, we believe that using pre-trained embeddings that benefit             
from semantic similarities across languages will help us avoid the problems with the pivot table               
and potentially help with the more complex models where they don’t have to focus on training the                 
embeddings but more on the RNNs. We believe we should be able to significantly improve the                
ranking following some of these steps. 

Acknowledgments 

The work described here is based on earlier work by Matt Hoffman while he was working at                 

 



Adobe. 

References 

[1] Joachims, T. , M.C. (2002) Optimizing Search Engines using Clickthrough Data. ​Proceedings of the               

eighth ACM SIGKDD international conference on Knowledge discovery and data mining ​, pp. 133-142.             
ACM. 

[2] Jegou, H., Douze, M., Schmid, C. (2010) Product Quantization for Nearest Neighbor Search. ​IEEE               

Transactions on Pattern Analysis and Machine Intelligence, ​ ( Volume: 33, Issue: 1, Jan. 2011). IEEE. 

[3] Severyn, A., Moschitti, A. (2015) Learning to Rank Short Text Pairs with Convolutional Deep Neural                
Networks. ​SIGIR '15 Proceedings of the 38th International ACM SIGIR Conference on Research and              

Development in Information Retrieval ​, pp. 373-382. ACM. 

[4] Joachims, T. (2009) Support Vector Machine for Ranking. ​Cornell University​. 
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html 

[5] Kingma et al. (2014). Adam: A Method for Stochastic Optimization. ​3rd International Conference for               

Learning Representations, San Diego. 

[6] Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y. (2014) On the Properties of Neural Machine                 
Translation: Encoder–Decoder Approaches. ​Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics           

and Structure in Statistical Translation ​, pp. 103–111.  Association for Computational Linguistics. 

[7] B., Bahdanau, D., Cho, K., Bengio, Y. (2015) Neural Machine Translation by Jointly Learning to Align                 
and Translate. ​ICLR 2015​. 
[8] Guo, J., Fan, Y., Ai, Q., Croft, W. B., (2016) A Deep Relevance Matching Model for Ad-hoc Retrieval,                   

CIKM'16​, ACM 

[9] dos Santos, C., Tan, M., Xiang, B., Zhou, B. (2016) Attentive Pooling Networks. ​arXiv:1602.03609v1               

[cs.CL] 11 Feb 2016 

[10] Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., Ward, R., (2015) Semantic                   
Modelling with Long-Short-Term-Memory for Information Retrieval , ​arXiv:1412.6629v3 [cs:IR] 27 Feb           

2015 

 

 

  

 



Appendix 

 

Figure 1: Image from Adobe Stock with title ​“Woman and little girl eating at kitchen” ​, and tags 
“woman” “little” “girl” “eating” “vegetable” “salad” “residential” “kitchen” “happy” 

“together” “ordinary” “people” ​ ... 
 

 

 

Figure 2: baseline, GRU Query and Attentive Attributes Models 

 

 



 

Figure 3: training with positive (+) and negative (-) samples 

 

 

 

Figure 4: Query Length  

 

 



 

Figure 5: Title Length 

 

 

Figure 6: Tag Length 

 

 



 

Figure 7: Error rate with learning rate  

 

 

Figure 8: Error rate with margin 

 

 



 

Figure 9: Error rate by model 

 

Figure 10: demo of query “golden bowl” 

 

 

 


