

Learning to Rank with Attentive Media Attributes

Baldo Faieta Yang (Allie) Yang

Adobe Adobe
San Francisco, CA 94103 San Francisco, CA. 94103

bfaieta@adobe.com yangyan@adobe.com

 Abstract

In the context of media search engines where assets have small textual data
available, we explore several models that improve the learning to rank use cases.
In particular, we propose a model with an attention mechanism that leverages
phrase-based attributes to guide the importance of other keyword-based
attributes. We train these models with clickthrough data from Adobe Stock
search queries and we evaluate them using various ranking metrics. Preliminary
results show that our proposed methods have the potential of significantly
improve ranking results.

1 Introduction and Background
With the advent of massive proliferation of images and media in general, searching for images has
become an important task for search engines. Users expect typing a few words and finding the
documents they are looking for. In the case of media, this use case is harder than searching for
documents of plain text. Indeed, images, and media in general, have very few attributes associated
with them. There is usually some short text like a caption or a title and also other attributes like
tags or language used.

By looking at the clickthrough data from the search results, relevance of results can be
substantially improved [1]. By using a variety of signals such as image popularity, whether there
is a title, the number of tags, etc. and, using techniques like SVM ranking [4] to assign weights to
these signals, a search engine can use these signals at query time to boost the results for relevance.
Because of the expectation for search engines to return results within 100ms, more expensive
approaches to ranking are only possible within a two-stage approach where. First, an initial query
search is performed that uses the offline ranking weights, and then a second, more expensive
ranking, is done in a window on the top results of the first query using learning to rank methods.

An alternative approach to help users find images is to look into the image itself by identifying
what is on the image and let the user query with an existing image to find similar images.
Convolutional neural networks (CNN) have been trained to associate a feature vector with the
images and use nearest neighbor (NN) search methods [2] to find the most similar images. That is,
at query time a CNN feature vector is calculated for the query image and then using NN
techniques such as product quantization compare the query feature vector efficiently with
pre-trained codes associated with the feature vectors of the images in the corpus.

More recently, a combined approach for learning to rank using deep learned feature vectors
(CNNs) has been applied in the domain of text search [3]. Using pre-trained embeddings
associated with terms in the query and the documents, separate sentence matrices are constructed

where convolutional feature maps are derived to train a network with question and answering data
to derive ranking data for text retrieval. In principle, this method can be used in the second stage
ranking and in an analogous manner to image similarity use NN methods to rank for the most
relevant results.

In the context of media search, the question is whether deep learning learn-to-rank techniques can
help for search relevance when using clickthrough data using the few keywords within the query
and potentially the very short text associated with the media and additional textual features present
such as tags. Here, we describe a set of models exploring this question where we learn
representations of the query as well as for the media textual attributes so that when matched with
each other we end up with a score that can be used in a second-stage learn-to-rank retrieval. The
models we consider go from a simple model where we learn the embeddings of the query and the
media attributes to a more complex model where we use the short text associated with the media
to guide the representation of the media attributes and come up with a combined deep
representation of the media for comparison with the query’s.

Even with the two-phase query approach, there is a strict limitation on the amount of computation
that can be devoted to evaluating each candidate result together with the query. The actual
comparison between the query and the candidate representation has to be very simple and efficient
and following the work of NN techniques, we assume that the actual computation per candidate at
query time can be at most something equivalent to the cosine distance or a dot product. But, we
can spend computationally some effort in deriving a query representation at query time given that
it is done just once, and on the candidate result side, we assume that we can pre-calculate offline
their representation, so we could build complex models.

2 Models
Figure 2 shows a diagram of the models considered. Our models follow the siamese architecture
where the query flows in the left side, while the candidate results flows through the right side.
Both sides produce a feature vector that are then compared with each other using the dot product
to produce a score. There are 3 models we consider: a simple ​baseline model, the ​GRU-Query
model where the query side is more complex and the ​Attentive-Attributes where an attention
mechanism is used on the candidate results side.

2.1 Query-side

In the query side, for the simple ​baseline ​model, we just sum up the embeddings of the terms in
the query while for the more complex models, ​GRU-Query and ​Attentive-Attributes ​, we use a
recurrent neural network (RNN) and more specifically a GRU[6], which we feed with embeddings
of the query terms. Indeed, we want the model to learn a representation of the query that takes into
account the sequence of the terms. For example, we want the network to distinguish a query like
“snow white” from that one of “white snow”.

2.2 Candidate-results-side

On the candidate results side, for the ​baseline and ​GRU-Query models, we just add up the
weighted embeddings associated with the tags. For the ​Attentive-Attributes model, we want to
leverage the more targeted semantic coherence of the title (or potentially a caption) to guide
(through an attention mechanism similar to [7]) the additional attributes like tags. Tags (as well as
other attributes) are not sequential and but contain additional information where not all is very
relevant. So, the attention mechanism focuses the importance of the tags based on the more
coherent text of the tile.

2.3 Attentive-Attributes Model

In the ​Attentive-Attributes model, we use a GRU for the attributes that have phrases or sentences
like the title in Figure 1: “Woman and little girl eating at kitchen”. Titles tend to be short but there

are still meaningful sequences and we want our model to represent them. Textual attributes like
tags, they are usually narrow meaningful terms, but the order is less important. Also, the degree to
which each tag is useful is not apparent. In Figure 1 for example, the tags “residential” or
“ordinary” are peripherally important. the ​Attentive-Attributes model uses the output states of
the title GRUs with an attention mechanism similar to [7] to weigh in each tag. Then, these
weighted tags are max pooled to produce an aggregate representation of the tags. We concatenate
the title and the tags and use this feature vector to compare with the query. In order to match both
representations, we multiply the concatenated vector by an interaction matrix.

More in detail, similarly to [7] and [9], if is the matrix of hidden states of the title, and is an H J
interaction matrix between tags and titles and is the matrix that holds the tags embeddings, then T
we create a matrix that holds the soft context of the hidden state of the title anh(H J T)S = t

⊤ h
i

up to term to the tag . The context is a score that says how much state supports tag . i t

j
 s

i,j h
i

 t
j

Then we apply a column-wise max-pool operation on which essentially picks the most likely S
context for tag among all the hidden states in the title. In the example of Figure 1, effectively, t

j
 h

i

tags like “vegetable” and “salad” might get boosted by the phrase “eating at kitchen”. With the
max-pooled score , as in [7], we normalize them using a softmax layer into a vector which s

j
 α

j

serves as a weight for tag and then end up with an aggregate weighted vector t
j

 t∑

j

α
j j

representing the tags. This vector is then concatenated with the output of the GRUs corresponding
to the title and used as representation for the candidate result.

2.4 Positive-Negative Pathways

Our models are trained using a margin-loss where, as illustrated in Figure 3, the inputs to the
model are on the one hand the query on the query side, and on the candidate results side, we have
the positive (+) pathway with a stack corresponding to the inputs for the clicked image and the
negative pathway (-) corresponding to the impression (i.e., an image that the user saw but did not
click). In order for the error to back-propagate correctly, care has to be taken to make sure that the
parameters for the stacks of the positive and negative pathways are tied (i.e., the same).

3 Related Work
As mentioned above, we follow the general approach described in [3]. That is, we have two
separate flows, one for the query and one for the candidate results. However, in [3], they use a
CNN on the sentence matrix induced by the embeddings of the terms in the query and in the
document. In our case, that approach makes sense for the query, but not for the candidate result.
Also, in [3], the comparison of the query and the document are more complex with a hidden layer
between the score and the join layer. That adds computational complexity.

The DRMM model in [8] adds much more interaction between the query and the document and in
addition, it has a fixed-length histogram mapping layer before feeding the results into a feed
forward matching network and then to score aggregation with a term gating network to derive the
final score. We do away from the local interaction between the query and the document and stick
with the siamese architecture over the query and the candidate results. However, their term gating
network is similar to our attention mechanism in that it helps focus the terms in the document
using the terms in the query.

Our model is closer to [9] in that their model uses an RNN (a biLSTM) for both the question and
answer and also their attention mechanism is almost the same as ours as well as that one in [7]. In
their case, they use the intermediate states of the question RNN to provide context for the answer
RNN. In our case, we use the intermediary states of the title RNN to provide context for the tags.
We also do a column-wise max-pooling to come up with the tag weights while [9] uses both
column-wise and row-wise pooling to come up with weights for both the question and the answer.
However, the difference in approach between [9] and our approach is that we keep the interaction

of the query side and the candidate result side very simple for query-time computational
efficiency, while [9] do not focus on that.

The model in [10], their model LSTM-DSSM derived from earlier work on Deep Structured
Semantic Model (DSSM), use LSTMs both for the query and for the document to derive a deeply
learned representation that is sensitive to the sequence of the query and the document so that at
query time, they can be compared much like our model. Also, like our model, it is trained with
click data with a positive pathway (clicked image) and a negative pathway (impression) and the
error has to be correctly propagated to the query, while the parameters of the RNN for both of the
positive and the negative pathway are tied.

4 Approach
To evaluate the merit of the various models, we trained each model with a large dataset from
search queries from Adobe Stock, a service used to license high quality images. For each model,
we first conducted a hyper-parameter search on a dataset of 1M samples, and evaluated it using
error rate to find the best parameter values. We define the ​error rate​, as the ratio of the number of
times the clicked image (+) score is lower than impression image score (-) and we use this metric
for both the training and validation phase. After having found a good set of hyper-parameters, we
use these to train on a larger dataset of 16M samples for each model. Finally, with these trained
models, we perform our test evaluation with a different 1M dataset using a different metric: the
relative weight calculated by an SVM ranker[4]. This metric is used to evaluate internally ranking
features in production of the Adobe Stock service. More details on this is in section 5.1

Because we have a large training dataset, we thought it would be better to train our models
together with the query, tags and titles embeddings as opposed to use pre-trained embeddings. We
leave the last row of the embedding matrix to be all 0s, so that when summing up the row vectors
doesn’t affect the sum values. As we mentioned in previous sections, we use max margin for
calculating the loss. For the ​GRU-Query and ​Attentive-Attributes models we use dropout and
L-2 regularization to prevent overfitting. We also found that gradient norm stayed small, so there
is no need for gradient clipping..

5 Experiments

5.1 Dataset

The Adobe Stock service, has over 70M+ images which contain titles, tags, and a myriad other
attributes like category etc. The 100M data record collected correspond to user queries, produced
over two years ago from the ​www.fotolia.com service. Each data record is composed of a user 1

query, the title and tags for the clicked image and the title and tags for one of the impressions of
the corresponding query. Our dataset had already being pre-processed where terms had already
being converted to indices using a ‘pivot table’, a mapping from about 1.7m words to 40k english
terms. This is a limitation on the dataset given that the pivot table was curated rather than learnt.
More on this issue will be discussed in section 6.

The 1M and 16M datasets were sampled from the 100M records. During batch training, we pad
query, tags, and titles to maximum lengths of 6, 20 and 50 respectively. Their distribution charts
can be seen below figure 4, 5 and 6. We believe The maximum pad lengths we choose will help to
cover the cases for most training data while not wasting too much training time on tail rare cases.
As mentioned in section 4, instead of applying mask at the end of the padded vectors, we just
make the last row of embedding matrix to be zero and sum up row vectors to form vector
representations of a query, tag or title.

1 fotolia was later acquired by Adobe Corp.

For the final tests, we use an internally deployed SVM ranker for evaluation. The SVM ranker
currently trains on 250 features to calculate an offline relevance score for each image. For each
feature, it assigns a weight that effectively indicates the feature importance. We include the scores
predicted by our model as an additional 251st feature and train the SVM ranker with the modified
dataset to determine the weight assigned to our feature. The larger the weight, the more important
the ranker considers it is. The dataset used during this test evaluation comes from search queries
taken from ​www.stock.adobe.com during the month of Oct, 2016, and of 1M data records, roughly
corresponds to about 26K queries, sampled from evaluation dataset of 70M with 270K queries.

5.2 Parameter Search

We first conduct hyper-parameter search on a small data set of 1M for training and 50k on dev,
sampled from the total 100M as mentioned in 5.1. The final tuned hyper-parameters are listed in
Table 1. For the ​baseline and ​GRU-Query models, we did a random parameter search with a
fixed range. For the ​Attentive-Attributes model, we did a random search the parameters from a
pre-defined lists of values chosen at different scales. All models are run for 10 epochs for each
random set.

For the ​Attentive-Attributes model we run about 100+ random search sets. For a given
hyper-parameter, we expect to have about 10+ sets runs with a particular value. In order to get a
sense of the effect on each hyper-parameter on the model, we averaged across the observations the
smallest error during training and dev phases and the epoch where the smallest dev error occurred.

 embed
size

hidden
size

lr adam
beta1

dropout margin l2
beta

baseline 391 n/a 0.00158 0.29 n/a 0.426 n/a

GRU Query 273 167 0.00102 0.811 0.438 0.144 0.961

Attentive-Attributes 512 512 0.00001 0.95 0.5 0.2 0.0001

Table 1​: Hyperparameters. embed_size: learnt word embedding size; hidden_size: GRU hidden
unit size; lr: learning rate; adam_beta1: the exponential decay rate for the 1st moment estimate;
dropout: dropout keeping rate; margin: a constant in loss function; l2_beta: L2 normalization

5.3 Results

Figure 7 and 8 shows how model error rate changes depending on the different learning rate (lr)
and margin in the ​Attentive-Attributes model. We conducted this analysis for all the various
hyper-parameters though only the margin and lr are shown below. Learning rate we chose for
Attentive-Attributes model was ​0.00001, because at this point the dev error rate is relatively low and
the epoch is high showing that it was probably not overfitting with these settings. We want small
difference between train and dev error to prevent overfitting, however we also want high epoch
showing that the model takes its time to keep on learning. Likewise, margin within 0.2 is a
reasonable compromise where the epoch is high with a relatively low dev and training error.
Another reason we focused on values that have a larger epoch is that because the
Attentive-Attributes is a complex model, when being trained with the 16M dataset, we did not
want it to get stuck in a local minima too early on. The hyper-parameters shown in Table 1 reflects
this compromise of having on average larger epoch number with comparatively lower dev error.

Figure 9 shows the error rate by model and data size. Larger data shows better results. However,
we obtain the unexpected results that baseline performs best, based on validation dataset. It looks
like the more complex the model, the bigger error we get. We will further discuss the implications
of this in section 6..

On SVM ranker production test, we achieve very promising results. Table 2 shows the top 5 ranks
for the SVM calculated weight. Again, the larger dataset performs better than the small dataset. In
1M, our weights, 0.239 and 0.27, rank 3rd place out of 251 features; in 16M, our weights, 0.429
and 0.412, rank 1st place. With 16M, However, baseline receives the best weight again.
Unfortunately, due to the time constraint and model complexity, we haven’t finished SVM testing
part for the final model at the submission time of the paper.

 Table2: SVM top five weights out of 251 features

5.4 Demo

For the ​baseline​, we loaded the data into a search service to visualize the effects of the rescoring
results. The current system has a hard time to deal with queries that match the query terms but
may have alternative partial meanings. Figure 10 shows a query where this is the case. The query
“gold bowl” fails because titles like “Gold fish bowl”, “Golden retriever with a bowl”, “Gold
colored wheat bowl” partially match the query terms. When we turn the rescoring resulting from
our trained model, we can see that the results look much better.

6 Conclusion

All three of our models improve the ranking score of Adobe Stock, which already produces good
results even though the training data was from an older (2 year old) version of the system. All of
them reduce the error rate and produce large SVM weight and a good rank. A caveat though is that
we only tested the SVM ranker with a smaller 1M dataset out of a larger 70M data set.

As mentioned in 5.1, our training data used a ‘pivot table’, a curated dictionary, to translate
non-english words to english and then look up in vocabulary table. The pivot table does just a
keyword lookup , which introduces errors in translation, thus creating noise in the data. Also, the
training and test data are not quite the same quality.

Even though the baseline model performed better, we suspect that the more complicated models
would fare much better with bigger datasets. Due to limitation on time and Azure resources, we
only trained with the 16M dataset, but we believe that longer training times and using the bigger
100M dataset may prove that the more complicated models do perform best.

Going forward, we will use most update data for training so that train and test data are of same
quality. We will enlarge the train and test data size to 100M+ and 70M respectively. 70M is the
current production test size. We want also to mix the textual features with the visual features to
create a multi-modal model. Lastly, we believe that using pre-trained embeddings that benefit
from semantic similarities across languages will help us avoid the problems with the pivot table
and potentially help with the more complex models where they don’t have to focus on training the
embeddings but more on the RNNs. We believe we should be able to significantly improve the
ranking following some of these steps.

Acknowledgments

The work described here is based on earlier work by Matt Hoffman while he was working at

Adobe.

References

[1] Joachims, T. , M.C. (2002) Optimizing Search Engines using Clickthrough Data. ​Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining ​, pp. 133-142.
ACM.

[2] Jegou, H., Douze, M., Schmid, C. (2010) Product Quantization for Nearest Neighbor Search. ​IEEE

Transactions on Pattern Analysis and Machine Intelligence, ​ (Volume: 33, Issue: 1, Jan. 2011). IEEE.

[3] Severyn, A., Moschitti, A. (2015) Learning to Rank Short Text Pairs with Convolutional Deep Neural
Networks. ​SIGIR '15 Proceedings of the 38th International ACM SIGIR Conference on Research and

Development in Information Retrieval ​, pp. 373-382. ACM.

[4] Joachims, T. (2009) Support Vector Machine for Ranking. ​Cornell University​.
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

[5] Kingma et al. (2014). Adam: A Method for Stochastic Optimization. ​3rd International Conference for

Learning Representations, San Diego.

[6] Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y. (2014) On the Properties of Neural Machine
Translation: Encoder–Decoder Approaches. ​Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics

and Structure in Statistical Translation ​, pp. 103–111. Association for Computational Linguistics.

[7] B., Bahdanau, D., Cho, K., Bengio, Y. (2015) Neural Machine Translation by Jointly Learning to Align
and Translate. ​ICLR 2015​.
[8] Guo, J., Fan, Y., Ai, Q., Croft, W. B., (2016) A Deep Relevance Matching Model for Ad-hoc Retrieval,

CIKM'16​, ACM

[9] dos Santos, C., Tan, M., Xiang, B., Zhou, B. (2016) Attentive Pooling Networks. ​arXiv:1602.03609v1

[cs.CL] 11 Feb 2016

[10] Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., Ward, R., (2015) Semantic
Modelling with Long-Short-Term-Memory for Information Retrieval , ​arXiv:1412.6629v3 [cs:IR] 27 Feb

2015

Appendix

Figure 1: Image from Adobe Stock with title ​“Woman and little girl eating at kitchen” ​, and tags
“woman” “little” “girl” “eating” “vegetable” “salad” “residential” “kitchen” “happy”

“together” “ordinary” “people” ​ ...

Figure 2: baseline, GRU Query and Attentive Attributes Models

Figure 3: training with positive (+) and negative (-) samples

Figure 4: Query Length

Figure 5: Title Length

Figure 6: Tag Length

Figure 7: Error rate with learning rate

Figure 8: Error rate with margin

Figure 9: Error rate by model

Figure 10: demo of query “golden bowl”

