
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Assignment 4: Question Answering on the SQuAD
Dataset with Part-of-speech Tagging

Joan Creus-Costa, Philip Hwang, and Nancy Xu
Stanford University

jcreus@stanford.edu, phwang20@stanford.edu, xnancy@stanford.edu

Abstract

This research applies deep learning with bi-LSTMs to train a model that re-
sponds to queries on the Stanford Question Answering Dataset (SQuAD). The
model design was motivated by Wang et. al.’s December 2016 IBM Research
paper on multi-perspective context matching for machine comprehension. Us-
ing TensorFlow, we implemented a multi-layer neural network architecture uti-
lizing bi-directional LSTMs and context-based processing to maximize scores in
the dataset. Our model achieves a performance of 61% F1 on the hidden test de-
spite its small number of parameters, and offers room for improvement in multiple
directions.

1 Introduction

Since the release of the Stanford Question Answering Dataset (SQuAD) in 2016, training end-to-end
models for machine comprehension (MC) has become more accessible than ever before. Previous
machine comprehension datasets were either too small to train complex models on or too easy to
allow for evaluation of the relative performance of newer models. SQuAD alleviates several of these
concerns. We propose a deep learning architecture for machine comprehension based on training
feedback on SQuAD. In this work, we build on the Multi-Perspective Context Matching Model
of Wang et al., as well as other recent work in machine comprehension by others in developing
high-scoring models for SQuAD. In this section, we will outline some previous attempts as well as
preluding motivations for the present model.

Some perhaps naive but reasonable baseline models might include some aggregation of bi-LSTMs
with no nontrivial intermediate transformations or even variants of Logistic Regression [10]. In
practice, these approaches prove to be quite poor in performance in comparison to many of the state-
of-the-art. For one, the difficulty of the machine comprehension task can prove too challenging for
models that lack the proper expressive power, such as in the case of logistic regression. Furthermore,
the amount of unessential “noise” (with respect to the answer of the question) in large passages might
appear too frequently for simple aggregations of the standard deep learning arsenal of bi-LSTMs and
CNNs to efficiently learn.

Intuitively, one might assume that a distinguishing characteristic between humans and naive models
highlighted above is the ability of humans to quickly “skim” through passages to focus on subsets of
the passage with demarcating words related to the task at hand. A human might not need completely
parse the contents of a passage to find a desired answer. For example, if a question of the form
“What date was Barack Obama born?” it would be unnecessary, and perhaps even damaging to
performance, for one to completely read the former President’s Wikipedia page to find his date of
birth. One could easily simplify answering this question by identifying that the answer is most
probably in the form of a number and within in some neighborhood of words such as “born.” As
many high-performing models have been developed since the inception of SQuAD, many of these
models appear to mirror this characteristic. For example, the BiDAF model (achieving an F1 of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

81.525%) developed by Seo et al. makes use of a so-called attention flow layer which attempts
to capture directionally pairwise similarities between words in Q and words in P [3]. Xiong et
al.’s recent model (F1 = 80.4%) introduces to the task Dynamic Coattention Networks, which is
loosely guided to efficiently locate the important parts of the sentences [8]. Wang et al.’s model, of
which our present model is inspired by, uses two intermediate layers composed of variants cosine
similarity functions which also have mimicked the “filtering” task (we will later illustrate the effect
matching intermediates have on our model in Figure 3). Thus, our main motivation in developing
the components to our model was aimed at fine-tuning previous sentence intermediate layers and
improving model attention mechanisms to generalize more efficiently.

Figure 1: Sample SQuAD Data Entry [10].

2 Problem Statement

Here, we would like to properly formalize our task. Similarly to the formalization by Wang et al.,
our machine comprehension task involves taking some passage P = {p1, p2, . . . , pN} and question
Q = {q1, q2, . . . , qM} and computing the correct portion of the passage P which produces an
answer A for question Q. We simplify the problem by predicting two indices a and b representing
the start pa and end pb of the answer, assuming that they are independent. Note that we require
1 ≤ a ≤ b ≤ N. We are therefore trying to maximize the probability of the start and end indices
being correct given the question and the passage.

Our architecture implements a multi-layer neural network architecture with bi-directional LSTMs
for context representation and vector aggregation. We also use a vector-based relevancy matrix to
filter key words in the initial data sample. The full model builds upon previous research by making
use of a matching layer to establish dependencies between the question and passage, filtering input
using neighborhood similarities, along with part-of-speech (POS) tagging to provide better sentence
context for the training model. Training F1 and EM scores are used as a baseline for development.

3 Model Architecture

Our neural network architecture builds on the previous multi-layer network proposed by Wang et.
al.’s December 2016 IBM Research paper. Following the standard machine comprehension archi-
tecture of word embedding layer, contextual embedding layer, matching layer, and aggregation,
Wang et. al. developed a unique matching network based on multiple perspectives building vectors
through cosine similarity. Our model consists of a simplified version of that model, that excludes
LSTM character embeddings and avoids the full complexity of the original matching layer by using
naive cosine similarity. As a way to improve the results we added part-of-speech (POS) tagging and
tuned the prediction layer logic, as well as exploring the hyperparameter space and design choices.

Layer 0: Word Embeddings. We transform each word in the input to a vector that represents the
word. We used the 6B Wikipedia GloVe vectors with d = 300 dimensions. Since it’s an uncased
dataset, we mapped upper and lowercase versions of the word to the same vector. This gives us two
tensors, q and p, in RQ×d and RP×d where Q,R are the length of the question and the paragraph.
We also concatenate part of speech data, as explained in the section below.

Layer 1: Filter Matrix. As in [6], the model computes a relevancy degree rj for each word pj in
the passage P . The relevancy score gives a similarity-based estimate of the relevancy of each word

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 2: General architecture from Multi-perspective Context Matching Model (Wang et al.) [6].

in the passage to the final query answer and is computed as follows, where ri,j is the (i, j) entry of
the filter matrix.

ri,j =
qTi pj

||qi|| · ||pj ||
(1)

rj = maxi∈Mri,j (2)

The resulting filtered representations are given by

p′j = rj · pj (3)

Essentially, this works as a way to assign preliminary weights to each word in the passage according
to how related they are to the question. As explained below, this step has room for improvement that
will be explored in future work.

Layer 2: Context Representation. The context representation layer performs a bi-LSTM on both
the question and answer vectors given by the filter layer. This layer embeds the context information
of the textual input into output vectors of the RNN. The same bi-LSTM cell, with hidden size
h = 150, is applied to both contexts as shown above.

Layer 3: Context Matching. Here we use a simplified model that does not use the full power
of multi-perspective matching in [6]. While the paper showed that this layer had a noticeable effect
on scores, we decided to use naive cosine with three matching strategies instead to both simplify the
model (and hence training time) and to allow us to have some baseline we could improve upon.

We start with the outputs of the bi-LSTM in the previous step,
−→
hp,
−→
hq,
←−
hp,
←−
hq . The first two come

from the forward pass and the last two come from the backward pass: they are as long as each
question or passage and their second dimension is h, the state size. The idea is then to compute a
similarity matrix between each word in the question and the paragraph.

−→
R ij =

−̂→
hp
i ·
−̂→
hq
j (4)

←−
R ij =

←̂−
hp
i ·
←̂−
hq
j (5)

Once we have these two matrices we can perform the same matching strategies described in [6]:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

1. Full matching. For each word in the passage we compute two scalars, mi1 and mi2, that
compare the word to the last and first words in the question.

2. Maxpooling matching. For each word in the passage we compute two more scalars, mi3

and mi4, that compare that word with the word in the question that matches the most.

3. Meanpooling matching. For each word in the passage we compute two last scalars, mi5

and mi6, that compute the average similarity between that word and those in the question.

We end up having 6 numbers for each word in the passage, that get aggregated into a tensor that gets
fed to the next layer.

Layer 4: Aggregation. The aggregation layer runs a final bi-LSTM on the previous tensor to
combine all that data, generating forward and backward vectors (each with a state size of l = 60).

Layer 5: Prediction. The forward and backward vectors for each word in the passage get concate-
nated and are fed into a neural network with one hidden layer, of size 50. The activation function
is a rectified linear unit (ReLU). The final linear transformation obtains a single number for each
word in the passage, that corresponds to a raw probability that gets fed into a softmax. That final
transformation does not include a bias, because the softmax function is invariant under constant
addition.

4 Experiments

4.1 Model

POS Tagging. In an effort to help our model generalize syntactical information about input se-
quences, we classify each input word based on its part of speech (POS). We provide the POS as a
concatenated one-hot vector for each embedding. Python’s NLTK provides a quick, pretrained POS
tagging system based on a perceptron learning network, which we use to incorporate the additional
features in our model. While its performance is somewhat below the state-of-the-art, we expect that
the marginal improvement would not be significant enough to warrant the computational expense.

Most SQuAD queries expect noun answers. More intuitively, providing POS augments query an-
swering by using question comprehension to identify and detect the expected POS of the query
answer. Essentially, it is equivalent to pre-training part of the context representation layer, allowing
the bi-LSTM to use more contextual information about the words it’s reading. We implemented
POS Tagging and got good results for F1, at very little computational cost and with few additional
parameters.

Choice of recurrent cell. While most models use LSTMs (Long Short-Term Memory) as the cell
driving the recurrent neural networks, we wanted to explore how well other choices performed.
LSTMs are usually chosen because they deal comparatively well with the vanishing gradient prob-
lem and have shown good performance on a variety of tasks. However, recently GRUs (Gated
Recurrent Units) have been shown to achieve similar performances with fewer parameters. We tried
running our model with both cells and achieved a similar final performance (about 61% on the
validation set) and learning, so we ended up using simply LSTM cells.

Span generation. An issue with the formalism used above is the fact that the start and end pointers
within the passage are clearly not independent of one another—a rigorous, careful Bayesian model
would compute the latter conditioned on the former. While, arguably, this partially happens within
the aggregation layer, there is still the possibility that the result of the argmax operation will be in
very different parts of the passage—if there are two similarly likely answers, for instance. As a way
to cope with that, we realized that most answers are short (fewer than 20 tokens) and thus given the
most probable start pointer we need only select the most probably end pointer within the next 20.

However, intuitively, an even better approach that’s left for future work is to generate the full
Bayesian matrix of each pair, with the end pointer conditioned on the start pointer. We then simply
take the pair with the greatest combined log probability.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

(a) Learning curve throughout the epochs. The F1
score (in blue) tapers off at about 60% and learning
slows down significantly after the first epoch, which
translates to an asymptote in accuracy.

(b) Plot of the F1 and EM scores for both the train-
ing and validation datasets. Note that, despite regu-
larization, overfitting becomes a problem after a few
epochs and only gets worse.

Figure 3: Training process for the model that drove the final submission.

4.2 Training

Optimizations. Most questions and passages in the dataset are rather short, with a few outliers.
In order to greatly reduce training time, we set a maximum length for questions and passages after
looking at the percentiles of each. We chose to cap questions at 25 words and passages at 300. We
train our data in batches (usually 48, but ranging from 32–128) with the Adam optimizer.

Learning rate and regularization. Stochastic gradient descent is performed using the Adam op-
timizer. We found the results to be surprisingly sensitive to learning rate: if the learning rate is too
high, the model quickly settles in a bad minimum; however, we found that if it’s too small it leads
to more pronounced overfitting. Our best result was obtained with ε = 0.001. We also used dropout
for regularization, with a dropout rate of 0.2. This was applied to each LSTM layer and to the final
feedforward neural network for prediction. This attempts to prevent the model from overfitting by
randomly dropping units from the network.

Infrastructure. The model was trained on Microsoft Azure GPUs as well as Amazon EC2 (CPU)
instances in order to parallelize the training models and perform optimizations faster. Our training
times were about 2h/epoch on Amazon CPUs and, after optimizing the GPU instances, about half
an hour per epoch for the simpler models. We trained for a maximum of 10 epochs, but often
convergence was achieved much faster than that.

4.3 Results

Figure 3 shows an sample training session, from our best model that got submitted to Codalab. We
clearly see that most of the learning happens early on in the process and, despite regularization,
some overfitting happens in the later stages. Our validation accuracy tapered off at around 60% for
many different versions of the model, including different sizes h = 100, 150, 250 for the bi-LSTMs
and choice of RNN cells.

After submitting to the hidden SQuAD test set in CodaLab, we got an F1 score of 60.8% and an
EM score of 49.1%, above the logistic regression model in the original SQuAD paper [10] but well
below the current state of the art. For the dev set, we got 60.7% for F1 and 49.2% for EM.

4.4 Analysis

To assess the results of our architecture we tried to visualize the predictions made by the systems, as
well as plotting the different learning curves (see Figure 3).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 4: Heatmap of question-answer similarity measures, based on the forward R matrix and
associated vectors.

Answer length \ Paragraph length 0-100 101-200 200+
1-3 61% (468) 59% (2393) 55% (353)

4-11 46% (185) 50% (691) 47% (98)
12+ 12% (11) 24% (77) 35% (8)

Table 1: F1 score for various combinations of answer length and paragraph length. In parentheses
there’s the number of datapoints used to estimate each F1 score.

Figure 4 shows the forward similarity matrix from the context matching layer for one of the ques-
tions, as well as the aggregated tensor with the different matching strategies at the bottom. We
clearly see that, even in that step (before aggregation happens) the model has a good idea of where
the answer is going to be. One interesting thing that we noticed is that, for most question-paragraph
pairs, either the forward or backward similarity matrices were useful, but usually not both at the
same time. This indicates that they capture different components, and thus merging their results is
useful for the system.

Table 1 shows a matrix that compares our results with different paragraph and answer lengths. It
shows that most answers are in fact very short (1–3 tokens) and that the model is able to answer
them better. We also see that performance degrades slightly with bigger paragraphs, though more
data is required to fully reach that conclusion.

5 Conclusion

We have introduced a model based on multi-perspective matching [6] that incorporates part-of-
speech tagging as well as other optimizations to obtain a result of 61% F1 on the hidden SQuAD
dataset, thus showing a decent ability to perform Machine Comprehension and Question Answering
tasks.

After working with the dataset and exploring different model designs, we have come up with parts
where improvements could be made. First, we could include character embeddings and multiple
perspectives, as in [6]. However, there are still some weak spots that we hope to be able to improve
in the future.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

We have considered the usage of neighborhood filtering in the first step (filter matrix) instead of
simply looking at each individual word. This is based on the idea that while the answer phrase in
the passage often resides near instances of the question words, the answer phrase is rarely every
contained within the question. We can instead look at a window of words around to get a better idea
of the relevancy.

Another area for improvement is the final prediction layer. By dropping the independence assump-
tion of the start and end pointers, we might be able to compute a matrix of each end position condi-
tioned on each start position, and take the maximum of that. This way, we avoid selecting answers
that are too long or that are inconsistent between start and end.

To extend our part of speech tagging addition, another final approach that we can take is to also
embed information on the semantic and grammatical dependence of the words, to aid the system
in parsing the question and passage. Finally, by creating an ensemble we can slightly boost our
performance.

References

[1] Chen, Danqi, Jason Bolton, and Christopher D Manning. A thorough examination of the cnn/daily mail
reading comprehension task. arXiv preprint arXiv:1606.02858, 2016.

[2] Kenton Lee, Kenton, Tom Kwiatkowski, Ankur Parikh, and Dipanjan Das. Learning recurrent span repre-
sentations for extractive question answering. arXiv preprint arXiv:1611.01436, 2016.

[3] Seo, Minjoon, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[4] Shen, Yelong, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop reading in
machine comprehension. arXiv preprint arXiv:1609.05284, 2016.

[5] Wang, Shuohang and Jing Jiang. Machine comprehension using match-lstm and answer pointer. arXiv
preprint arXiv:1608.07905, 2016.

[6] Wang, Zhiguo, Haitao Mi, Wael Hamza, and Radu Florian. Multi-perspective Context Matching for Ma-
chine Comprehension. arXiv preprint arXiv:1612.04211, 2016.

[7] Wang, Zhiguo, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching fornatural language
sentences. arXiv preprint arXiv:1702.03814, 2017.

[8] Xiong, Caiming, Victor Zhong, and Richard Socher. Dynamic coattention networks for question answering.
arXiv preprint arXiv:1611.01604, 2016.

[9] Yu, Yang, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. End-to-end answer chunk
extraction and ranking for reading comprehension. arXiv preprint arXiv:1610.09996, 2016.

[10] Rajpurkar, Pranav, Zhang, Jian, Lopyrev, Konstantin, Liang, Percy. Squad: 100,000+ questions for ma-
chine comprehension of text. 2013.

7

	Introduction
	Problem Statement
	Model Architecture
	Experiments
	Model
	Training
	Results
	Analysis

	Conclusion

