
∗NQSotA Continuation Curriculum Learning with
Question Answering on the SQuAD Dataset

Luke Johnston
Department of Computer Science

Stanford University
Stanford, CA 94305

lukej@stanford.edu

William Chen
Department of Computer Science

Stanford University
Stanford, CA 94305

wic006@stanford.edu

Rahul Palamuttam
Department of Computer Science

Stanford University
Stanford, CA 94305

rpalamut@stanford.edu

Codalab username: rpalamut

Abstract

We implement a slightly simplified Bi-Directional Attention Flow Model[4] and
a slightly modified Multi-Perspective Context Matching[6] model for Question
Answering on the SQuAD dataset. In the Multi-Perspective model, we add perspec-
tive matching between forward and backward contexts. We omit the character-level
embeddings of both models, and make a few other small simplifications. We
briefly looked at the effects of curriculum learning as a continuation method for
our BiDAF network. Curriculum learning[1] is inspired by the education system,
in which subjects are trained through an organized curriculum of varying tiers of
difficulty. This differs from other machine learning approaches where training is
done on random samples. We hoped this could improve performance on longer
length questions.

1 Introduction and Related Work

In this paper, we train two models on a recent Machine Comprehension and Question Answering
dataset, the Stanford Question Answering Dataset. This dataset consists of a number of question-
paragraph pairs, where the answer to each question is contained somewhere in the paragraph. Hence,
the task of the model is to predict the start and end index of the answer in the paragraph.

Our model structures are taken from previous work that has been done on the SQuAD[3] dataset,
with a few modifications. Due to the inherent difficulty of end-to-end machine comprehension tasks,
a variety of approaches have been suggested to predict answer spans from questions and contexts.
These approaches range from how attention is computed to how answer spans are identified. In the
Bidirectional Attention Flow model of Seo et al [4], a multi-stage hierarchical attention mechanism
uses various attention computations to create a query-aware representation of the context which is
then used to predict the answer location in the paragraph. On the other hand, the Multi-Perspective
Context Matching model of Wang et al[6] uses a set of perspective matchings between the questions
and contexts to predict the answer span. The details of these models are explained in their respective

∗NQSotA stands for Not Quite State of the Art

sections below. We explore the efficacies of these models while additionally looking into how a
curriculum learning strategy could affect their results.

2 Dataset and Pre-processing

The recently released Stanford Question Answering Dataset (SQuAD) consists of over over 100,000
questions, each matched with a paragraph that contains the answer. 10k of these pairs are reserved
for testing, and the remaining 90k are split into 85k training and 5k validation datapoints. Given a
question / paragraph pair, the model must predict the span of words in the paragraph that gives the
answer to the question. As the first step of training the model, the 300-dimensional GLoVe vector
encoding of each word in the question and paragraph is looked up. For our implementation of the
Multi-Perspective model these vector representations of each word are made into variables (that
are only initialized with the GLoVe embeddings), but for BiDAF the GLoVe embeddings are held
constant. Additionally, we truncate all paragraph lengths at 200 words. If the answer falls after the
truncation threshold, we set the answer span to be the last word in the paragraph. This truncation
loses less than 1% of training and validation examples, but results in significant training speedup.

Figure 1: Distribution of question, paragraph, and answer lengths in the SQuAD dataset

3 Model 1: Slightly Modified Multi-Perspective Context Matching

3.1 Filtering

The first layer of the MPCM network filters the paragraph word embeddings by their similarity to the
question word embeddings. The cosine similarity is taken between each pair of question and answer
words

rij =
qTi pj
||qi||||pj ||

and then we compute the maximum similarity each paragraph word has with any question word
rj = max

i
rij

Then each paragraph word is filtered
p′j = rjpj

The purpose of this layer is to allow the model to filter out irrelevant paragraph words. By identifying
words in the paragraph that are similar to the words of the question, the model is one step closer to
determining where the answer is.

Note that the word embeddings qi and pj are initialized with the GLoVE embeddings, but are trainable
variables so can be trained for this specific task. Additionally, the original MPCM paper uses a
character-level embedding in addition to the GLoVE embeddings, but we decided to omit this step
since it only results in an increase of 3% in the F1 score (according to the original MPCM paper).

2

Figure 2: Multi-Perspective Matching Model Architecture

3.2 Context Representation

Let Q ∈ R100×n be a matrix of all the embeddings of the question words, filtered with the previous
layer, where n is the length of the question. Likewise, let P ∈ R100×m be the embeddings of
the context words, filtered with the previous layer, where m is the length of the paragraph. Note
that m ≤ 200, since we truncated long paragraphs, unlike the original MPCM paper. We apply a
bidirectional LSTM with state size 100 to the question and paragraph separately to obtain context-
aware representations of each word

Uf , U b = LSTM(Q) ∈ R200×n

Hf , Hb = LSTM(P) ∈ R200×n

which are passed to the Multi-Perspective layer. We treat the forward and backward context-aware
representations separately: Uf is the forward context-aware representation of the question, Ub is the
backward context-aware representation of the question, etc.

3.3 Multi-Perspective Context Matching Layer, with Modification

The "perspectives" of the model name are a variable W ∈ R20×100, where 20 is the number of
perspectives we decided to use (the paper used up to 50 perspectives), and 100 is the size of the
context embeddings. For single perspective Wi (a row of W), for each context-aware representation,
we compute the perspectives on that representation

Rf = Wi ◦ Uf

Rb = Wi ◦ U b

Sf = Wi ◦Hf

Sb = Wi ◦Hb

where ◦ represents broadcasted element-wise multiplication. Then, for each pair of question and
paragraph indices (i,j) we compare the similarity between these perspectives

mff = cos(Rf
i , S

b
j)

mfb = cos(Rf
i , S

b
j)

3

mbf = cos(Rb
i , S

f
j)

mbb = cos(Rb
i , S

b
j)

to get four "m-values" (matching values) for each perspective. This is the main modification to
the MPCM paper - in the original paper, they only use mff and mbb. We thought that including
mfb and mbf should help the model, for example, match forward-contexts of the question with
backward-contexts of the paragraph, which could be important.

If we now consider the matrix Mff of all mff values, it is a matrix of one perspective matching
between the forward contexts (of question and paragraph locations). From these matchings, we
compute three final metrics for each paragraph location, following the MPCM paper. The following
steps are done for Mff , Mfb, M bf , and M bb:

Full-Matching: mfull
i = Mff

1i

Max-Matching: mmax
i = maxj M

ff
ji

Mean-Matching: mmean
i = 1

n

∑
j M

ff
ji

For the full matching step when we are considering the backwards question context embeddings (mfb

or mbb), the 1 index is replaced with n (the length of the question words). This gives us three values
for each context word: the perspective matching between the paragraph word and a full representation
(either forward or backward) of the question, the max matching with any location in the question,
and the mean matching with the entire question. Hence the output of this layer is 20× 4× 3 = 240
matching values for each location in the context.

3.4 Aggregation Layer and Prediction

The output of the previous layer is sequence of vector representations of the paragraph. This sequence
is fed through another bidirectional LSTM[2] of state size 100 to aggregate the matching information
over time. The forward and backward outputs are concatenated to produce a final representation of
each paragraph location, oj ∈ R200. To obtain the predicted probabilities for the start index, each
oj is passed through a trainable affine transformation to be mapped to a single number, and then a
softmax is taken over these numbers. The predicted end index probabilities are likewise obtained
with another affine transformation and softmax layer.

3.5 Training Parameters

We used the Adam optimizer with a learning rate of 0.0001, following the paper, and a batch size of
32. Dropout is applied to the inputs of each LSTM with a keep probability of 0.2.

4 Model 2: Bi-Directional Attention Flow (BiDAF)

4.1 Contextual Representation Layer

First, we obtain a representation of the context of each word (in the paragraph and the question) using
a Highway Network [5] + Bidirectional LSTM. Each GLoVe embeddings ai ∈ R300 is forwarding
through a two-layer highway network to get a new word embedding wi. The first layer is a simple
feed-forward layer with ReLU nonlinearity to map the GLoVe embedding ∈ R300 to a vector
bi ∈ R100, and the second layer performs the highway mixing:

ni = ReLU(Wnbi + bn)

gi = Sigmoid(Wgbi + bg)

wi = ni ◦ gi + bi ◦ (1− gi)

to get the new representation of each word wi ∈ R100. ni is the transformed word embedding, gi
is the gate of the highway network that specifies how much of this transformed word embedding to
keep (and how much of the original embedding to keep), and wi is the new embedding. The primary
purpose of this highway network is to map the GLoVe vectors from size 300 down to the size of
the rest of the model’s hidden representations (100), but it also serves as an additional way for the

4

Figure 3: BiDAF Model Architecture

model to fine-tune the GLoVe encodings for the following task of context representation. The only
difference in this step from the original BiDAF paper is that it uses word-embeddings created from a
character-level RNN as input to the highway layer in addition to the GLoVe embeddings.

The next step uses a bidirectional LSTM RNN to obtain context representations of each location in
the question and the answer. This step is identical to the context representation step in the MPCM
model. Let Q ∈ R100×n be a matrix of all the embeddings of the question words, processed with the
previous layer, where n is the length of the question. Likewise, let P ∈ R100×m be the embeddings
of the context words, processed with the previous layer, where m is the length of the paragraph.
Note that m ≤ 200, since we truncated long paragraphs, unlike the original BiDAF paper. We
apply a bidirectional LSTM with state size 100 to the question and paragraph separately to obtain
context-aware representations of each word

U = LSTM(Q) ∈ R200×n

H = LSTM(P) ∈ R200×n

which are passed to the Attention Flow Layer. The size of each representation is 200 now because it
is the concatenation of the forward and backward outputs of the bidirectional LSTM.

4.2 Attention Flow Layer

In the attention flow layer, first an attention value aij for each pair of paragraph and question words +
context representations hi, uj is obtained

sij = wT
(a)[hi;uj ;hi ◦ uj]

to form a matrix S ∈ Rm×n. wT
(S) ∈ R

600 is a trainable parameter vector, and [;̇]̇ notation denotes
concatenation. The values of this matrix can be thought of as how much "attention" is given to the
corresponding pair of question and paragraph locations. These attention values are then used to
compute the following two steps:

Context-to-Query Attention For each location in the paragraph t, we compute the attention over
each question location with

at = Softmax(St:) ∈ Rn

5

where St: is the tth row of S. These attention values are used to create a single vector, representing
the attention-focused question, at this location in the paragraph:

ũt =

n∑
i=1

ati

Query-to-Context Attention In the above section, we compute an attention-focused representation
of the question FOR EVERY location in the paragraph. In this section, we compute a single attention-
focused representation of the paragraph (that does not correspond to any particular location in the
question, but rather is focused based on the entire question). This is done by first taking the maximum
along each column (second dimension) of S:

s′ = max
col

(S) ∈ Rm

which gives a value for each context word representing the max importance that context word has,
with reference to any point in the question. Then we obtain the attention-focused representation of
the context as

h̃ =
m∑
i=1

Softmax(s′)i

Once we have obtained both the attention-focused representations of the question, and the attention-
focused representation of the paragraph, we create a single vector gt by combining the original
context-aware paragraph representation with the attention-focused representations as follows:

gt = [ht; ũt;ht ◦ ũt;ht ◦ h̃] ∈ R800

4.3 Modeling + Prediction

The modeling layer of BiDAF is similar to the modeling layer of Multi-Perspective, except it uses a
two layers bidirectional LSTM RNN to produce the final contextual embeddings of the context words.
The inputs to this two layer bidirectional LSTM are the gt vectors from the previous layer, and the
outputs we denote m1

t . These outputs are additionally passed through a third LSTM layer to produce
m2

t . Two final numbers for each location are computed

p1t = wT
p1[m

1
t ; gt]

p2t = wT
p2[m

2
t ; gt]

and an application of softmax to the vectors p1 and p2 produces the final predicted probability
distribution over the start and end index of the answer span, respectively.

4.4 Training, Regularization, Masking

Bidaf was trained using the Adam Optimizer, with a learning rate of 0.0003 and exponential decay
every 32 batches by a factor of 0.999. Dropout for regularization was applied before each LSTM
layer and before the last linear transformation before the output predictions. The dropout rate was 0.2
in all cases. We used a minibatch size of 32, and since not every example in a batch has the same
question and paragraph length, we applied exponential masking before each softmax layer to ensure
the probabilities for each word location were only nonzero if paragraph / question was long enough
to contain that word location.

We decided to use the Adam optimizer instead of AdaDelta (what the original BiDAF paper used)
because after a bit of research it seemed that Adam was a more recently developed and generally
considered superior method, and more commonly used in the literature. However we later found out
that this is not always the case, so one future thing to explore would be trying the original AdaDelta
optimizer, or even others like RMSProp. Originally we were trying a higher learning rate of 0.1,
but the model would get stuck in a local minima with training loss around 4.5, so we decreased the
learning rate until that did not occur.

6

(a) F1 BiDAF (b) F1 curriculum learning

Figure 4: The F1 scores of both the BiDAF model to the right after 16 epochs is shown. On the left is
the F1 score after 4 epochs of curriculum learning.

Figure 5: Graph of training loss, validation loss, validation F1, and validation exact match. Note that
the F1 plot is slightly off. The large jump is due to a subtle calculation bug in F1 being fixed (our
model actually had higher F1 than we thought for a long time).

5 Curriculum Learning as a Continuation Method

We suspected that it might be more difficult for the model to predict answers with a longer length,
and decided to implement a continuation curriculum learning to train the model on more examples
with longer answers lengths. To do this, during every validation step (every 1000 batches), the F1
scores are evaluated for answers of each particular length. Then, when forming a new batch during
training, we sample from answer lengths with the following frequency:

fl ∝ (1− F1[l])2Nl

where fl is the sample frequency of datapoints with length l, F1[l] is the F1 score of answers of
length l on the validation dataset, and N is the number of answers of length l on the validation dataset.
This causes the model to train on answer lengths it does poorly on more often. We took our best
model parameters and trained them on this continuation curriculum learning strategy for 4 epochs.

6 Results

Our final F1 and EM scores on the test set for our implementation of BiDAF were

F1 = 60.54%

EM = 45.64%

after 16 epochs of training. Our modified multi-perspective model performed worse, only achieving
an F1 of 50% on the validation dataset, and an EM of 38% after 20 epochs of training. When
training our multi-perspective model, we at first were never able to get higher than a validation

7

w
ha

t k
in
d

w
ha

t y
ea

r

ho
w
 m

an
y

ho
w
 m

uc
h

ho
w
 lo

ng

w
he

n

w
ha

t d
oe

s

w
ha

t h
as

w
ha

t a
re

in
 w

ha
t

w
he

re

w
ha

t i
s

w
ha

t c
an

w
ho

w
ha

t w
as

w
hi
ch

ot
he

r

in
 w

hi
ch

w
hy

w
ha

t d
id

w
ha

t w
er

e

w
ha

t t
yp

e

ho
w
 d

id

Question Type

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
1
 S

c
o
re

F1 vs Question Type

Figure 6: The validation F1 scores of the BiDAF model on various question types (types taken from
Wang et al[6]) after 16 epochs.

F1 score of approximately 20%, and we could not determine our problem, which was our reason
for deciding to implement BiDAF as well. We later realized that we had an off-by-one error when
computing the word list from the span, and when we fixed that we realized our F1 was actually
around 40% all along. The additional increase to our final MPCM model’s performance came from
decreasing the learning rate - initially, we were getting stuck at a local minima with a learning rate of
0.01. We suspect that further tuning the learning rate and the exponential decay rate could improve
performance further, but did not have enough time to fully explore this.

Our curriculum learning results can be seen in figure 4. For high question lengths there are very few
training examples, so the F1 scores do not mean much. The main consistent effect of our curriculum
learning was a slightly lower F1 score for answers of lengths 1 and 2, and slightly higher F1 scores
for some answer lengths in the range (3-8). This adjustment came at the cost of a lower F1 score,
so it seems that encouraging the model to focus on harder examples requires it to perform worse on
the easier examples, which lowers the total score in this case. Also, there is really not that much
difference between the original F1 scores for answers of lengths 1− 5, which compose most of the
dataset (see Figure 1), so perhaps a better focus for curriculum learning would have been the type of
question, rather than length of answer. Towards this end, we graphed the F1 scores on different types
of questions in figure 6, but did not have enough time to train with curriculum learning on this metric.
The model seems to perform better on questions which can be answered with fewer words (shorter
answer spans) and/or those which expect numerical responses: what year, how many, etc. These
findings are consistent with the results from the answer length to F1 experiments mentioned above.

7 Conclusions and Future Work

We have implemented two Deep Learning architectures for Question Answering, namely Bidirectional
Attention Flow and a modified Multi-Perspective Context Matching. Simplified versions of the
architectures were shown to be effective and resulted in decent performance on the Stanford Question
Answering Dataset. We then attempted leveraging Curriculum learning as a continuation method
on our best model. However this was shown to decrease performance as the model began losing
its ability to generalize the majority of examples and focused more on the outliers. This result may
indicate that performing very well on the questions with longer answer spans could require a different
type of model than the ones we experimented with which do well on shorter spans.

8

For future work, we also want to leverage both BiDAF and MPM models by concatenating their
outputs and calculating loss. We believe the combined approach could result in improved performance.
We also want to look at how utilizing character embeddings in the ensemble approach can potentially
increase performance. And finally, we still believe that our model’s hyperparameters can be fine-tuned
to achieve accuracy more closely representing the reported results in the two papers.

8 Acknowledgments

We would like to thank our instructors Professors Chris Manning and Richard Socher as well as the
TA’s for putting together a great course on Deep Learning and Nautral Language Processing. We
would also like to thank the incredibly helpful team of teaching assistants for this class. Finally,
we would like to thank other students posting on Piazza and working late at night at Huang whose
unwavering support and thirst for F1 scores kept us going.

9 References

References
[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.

[2] Jason P. C. Chiu and Eric Nichols. Named entity recognition with bidirectional lstm-cnns. CoRR,
abs/1511.08308, 2015.

[3] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions
for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[4] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[5] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015.

[6] Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. Multi-perspective context matching
for machine comprehension. CoRR, abs/1612.04211, 2016.

9

	Introduction and Related Work
	Dataset and Pre-processing
	Model 1: Slightly Modified Multi-Perspective Context Matching
	Filtering
	Context Representation
	Multi-Perspective Context Matching Layer, with Modification
	Aggregation Layer and Prediction
	Training Parameters

	Model 2: Bi-Directional Attention Flow (BiDAF)
	Contextual Representation Layer
	Attention Flow Layer
	Modeling + Prediction
	Training, Regularization, Masking

	Curriculum Learning as a Continuation Method
	Results
	Conclusions and Future Work
	Acknowledgments
	References

