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Abstract

Recurrent neural networks have become prominent across many natural language
processing tasks, from named entity recognition to machine translation. We apply
a Seq2Seq model to the goal of creating a chatbot able to return self-generated
text responses based on arbitrary inputs. In doing so, we explore the benefits of
encoder-decoder networks, trade-offs between lacking data versus cross-training,
various attention scoring functions, and finally, an attempt at adapting Pointer
Sentinel Mixture Model to a dynamic length decoder. In order to create a chatbot
of specific persona, we also scraped Twitter and the general web for public data of
speech in the style of Donald Trump.

1 Introduction

Advancements in conversational modeling have had, and continue to have, broad impact across
academic research and global industry. Automated language comprehension in conversation form
could become a scalable and a highly regarded method of interface for various data retrieval tasks.
Recent advances in machine translation [15} [3]], context-aware query suggestions [20] and describing
multimedia content [2]] show sequence-to-sequence models as a promising foundation towards solving
previously intractable natural language processing tasks. To this end, we employ a Seq2Seq model
with attention as the core network in creating a chatbot capable of ingesting variable length queries
and returning variable outputs similar to those in [24], [[18]] and [19].

Past researchers have expressed difficulty in training a generalized open-domain chatbot, thus it was
elected to restrict our subject matter to conversations of a political nature. Furthermore, we proceed
to further limit scope by attempting to embed the chatbot with a persona around the newly elected
President Donald Trump, using ideas gleaned from [11f]. Trump was chosen as the target persona for
his uniquely identifiable speech patterns and large online presence, providing a good foundation for
data acquisition.

Pointer Sentinel Mixture Model (PSMM) [[16] solves a seemingly simple task, nevertheless, the
motivation and methods are far more intricate. PSMM allows words used within the encoder to
be directly copied forward to the decoder. Upon analyzing the frequency of words, we find that
most corpus’s have a long right tail of interesting words that simply don’t arise very often. Taking
advantage of the temporal nature of RNN’s, PSMM reduces the perplexity scores associated lacking
data haunting rare vocabulary words.

Nonetheless, PSMM has been designed for a fixed length encoder/decoder, which comes with
two strong drawbacks. First being that there is no clean implementation for training the PSMM
concurrently with a Seq2Seq model. Second, having a decoder length of one, yet backpropagating 100
timesteps with RNN’s is not computationally efficient. Forward-propagation and back-propagation
with RNN’s is sequential, requiring previous timesteps to complete before concurrent timesteps can
begin. We used spare time at the end of this project to investigate two simple methods to extend
PSMM to dynamic length, and in doing so, iterate over the dataset in a more computationally efficient
manner.



2 Related Work

2.1 Encoder Decoder Models

Inspired by the work from a Neural Conversational Model [24]], we saw great potential in being able
to create a working chatbot that was capable of generating relevant and meaningful responses to
arbitrary input queries. In their work, Vinyals and Le were able to train a bot to respond accurately
to IT Helpdesk queries using a relatively straightforward seq2seq model. Findings from Serban
et. al. [[18] were able to extend this model to non-goal-driven systems. From our understanding,
this approach differs from previous work since its main target aims to emulate the dialogues of real
humans rather than simply return a correct answer to a specific query.

The best baselines we could find on dialog corpora was published by Kaldec et. al. [9]] who performed
their studies around ranking responses given an input query. Their best models used a Bi-LSTM,
which served as a good starting point for our goals as well. To get closer to target of generating
responses we used the encoder-decoder network from [4], which has proven quite popular.

2.2 Pointer Models

Pointer Networks [23]] learn the conditional probability of an output sequence with elements that
are discrete tokens corresponding to positions in an input sequence, which is able to refer back to
a variable length input for predicting an output. Whereas a traditional classifier require the size of
the output vocabulary to be fixed beforehand, a pointer network creates a vocabulary on-the-fly for
each new example by using the input sequence as the dictionary of possible words to choose from.
This method is especially useful when the correct answer is a specific name or unique slang found in
the input, but is too rare to be found in most corpora. However, there is the drawback that the model
now fails to take advantage of the large vocabulary that is actually available, often as dense word
representations which can offer further training benefit or sparsely encoded discrete words.

Pointer Sentinel Mixture Models [16]] is a recent, clever, and simple method which produces state-of-
the-art perplexity scores on Penn Tree Bank and Wiki Text datasets with only a medium size model.
One key design trait is the inclusion of the learned mixture gate within the sentinel softmax. The
Pointer Sentinel Mixture Model distinguishes when to use the default RNN softmax for predicting
the next word against the pointer network, as regulated by:

P(il®i) = g Poocab (YilTi) + (1 — g) pptr (yil i) (1)

The trainable parameters added by PSMM are the affine tranformation used to generate ¢, and the
sentinel s, where both s and q are of the same dimensions as h for the LSTM’s. Specifically, the ¢
below represents a query used to derive g for the model.

q = tanh(Why_1 + b) 2)

s in turn represents an additional input that is appended to the encoder inputs. In effect, s allows the
gate of the pointer network to choose between the encoder inputs or the RNN. Concretely, when g
from Eq(1) is high, the pointer distribution will be disregarded, ultimately using the Softmax RNN to
generate the next word. Alternatively, when g is low, the pointer network will lean towards selecting
an item among the inputs, going back L words. For more information and detailed explanation,
please refer to the original paper [16].

3 Model

3.1 Encoder Decoder Network

The core of our conversational model was built using a Seq2Seq architecture that featured two RNNs,
an encoder used to build up a hidden state representation of an input query, and a decoder used to
generate an output response. Given that our maximum bucket size was 60 words, we used GRU [5]]
cells for both the encoder and decoder in order to minimize the vanishing gradient problem.

z=o(xU* + 841 W?#)
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Figure 1: Extending the pointer sentinel mixture model to be able to predict dynamic length outputs
required updating the backpropagation method such that gradients from the predicted words (orange)
were passed back, while the gradients from empty padding (dark blue) were not used for weight
updates. In this case, five predictions would be made, the last of which would use L+4 words in it’s
context.
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Ideally the hidden state of each cell would allow the gradients to flow through smoothly until the
gates felt it was time to forget that particular signal. Conversely, we also used gradient clipping top to
handle the exploding gradient problem.

In order to allow the final hidden state of the encoder to store the most amount of information, we
reverse the inputs on the encoder following the style of [22]. Given the amount of padding added
to certain sentences, we noticed that flipping the inputs caused noticeable increase in performance.
Similarly, we also considered using a bi-LSTM [7] in order to encode even more information into
the network. Given the limited time, we opted instead for increasing layer size of the encoder RNN,
which was much more straightforward to implement. Lastly, the chatbot utilized GloVE vectors as
distributed word embeddings in order to gain semantic understanding of the text [17]]. Given our
relatively limited data size, we opted not to let the word embeddings be trainable. Words that were
not found in the GloVE vectors were initialized randomly.

3.2 Pointer Sentinel Mixture Model

Our tenorflow code of the Pointer Sentinel model was built off work from Zaremba et al. [27]]. This
model also served as the foundation by Merity et. al., indicating that Zaremba et al. is the most
appropriate model to compare against. Additionally, in order to get a more direct comparison to
the work of Merity, our implementation also used LSTM cells [[8] rather than the GRUs mentioned
earlier, which we’d used for the Seq2Seq model.

3.3 Pointer Sentinel for Variable Length Generation

In an effort to expand the Seq2Seq model, we took a cue from Luong et.al. [15] who varied the
amount of decoders and encoders on such a network to perform a variety of tasks. Concretely, we
attempted to take the results of a single encoder to feed into both a traditional RNN encoder, as
well as a Pointer Model, effectively yielding a Pointer Sentinel Mixture Model capable of predicting
variable length outputs.

A standard PSMM would take the L words from the encoder to predict a single output word in the
decoder section, represented by an orange square. As seen in Figure[T|above, we extend this model
for dynamic length outputs. Please refer to the caption for a complete description.

The most straight forward method for applying PSMM to a Seq2Seq model is without making any
changes in the architecture, with the only novelty being the changes in training as outlined in Figure
[} A second adaptation, the next logical choice, is the expand s to be of dimensions hidden-state by



decoder length. A third choice, which we would implement next had we had more time, would be to
keep s the same, but increase the size of the affine transformation. In either of these cases, the goal is
to produce a ¢ that is unaltered based on changes to the input sequence length.

4 Experiments and Results

This type of issue is readily apparent through an example. Suppose we ask a person, "How was your
day?". This seemingly innocuous question could generate a wide variety of answers including:

1. "I had a wonderful time at the park today playing on the swing and on the slides. We had a
picnic afterwards with sandwiches and chips."

2. "Meh."

3. "Don’t want to talk about it."

From a person’s perspective, all of these answers are not only valid, but carry a weight of information
uncorrelated with the length of response or location of vectors in a word embedding space. Given
such varied accurate answers, it is quite difficult to train a conversational model to predict with a
high degree of confidence which one is the "most accurate". In fact, papers such as [12]] suggest that
most traditional measures of NLP tasks, such as BLEU score, ROGUE and METEOR are unsuitable
measures of dialog systems because most systems assumes only one ground truth response is available
given each context, whereas the reality is that multiple plausible responses are possible when talking
to a person. Consequently, we ended up turning heavily towards human evaluation when determining
the strength of the conversational model.

4.1 Data

A custom dataset was created from speeches, interviews, and presidential debates, resulting in half of
the collected 16,876 QA pairs. A strong effort put into parsing data into appropriate Q/A pairs that
had adequate length and content.

The other half of the dataset came from twitter. The content was filtered based on keyword, and the
keywords were iteratively and interactively determined. Proceeding this, the keywords were reused
to help rank each tweet with it’s most similar tweets. The similarity measurement was simple: first
ranking based on keywords, proceeded by secondary words if the count of common keywords was
a tie. The most similar tweet in the corpus became the question, and each tweet was gauranteed to
be used once and only once as an answer. This strategy gave us fairly clean data for minimal effort,
saving an estimated 80 hours of manual cleaning that would have been necessary otherwise.

The final split amongst (train, validation, test) was (12800, 2560, 1516) QA pairs each. With the
addition of cross training, the train set grew by 220,000 QA pairs from Cornell Movie Dialogue
Corpus. None of the Movie Dialogue QA pairs were added to the validation set, as we still wished to
minimize the perplexity of the original trump data solely.

Since PSMM tests needed quantitative results against a known baseline, these tests were performed
on Penn Tree Bank database.

4.2 Attention

We tested three different types of attention. From the tensorflow library, the default option available
was bahdanau [1]]. From class, we learned that luong [14]] might be better because the weight matrix
causes a direct interaction between the encoder hidden state and the decoder hidden state, rather than
a concatenation of the two. Additionally, we also looked at using the attention mechanism from
Vinyals et. al. [25]] because it seemed possible that the extra parameters associated with the scoring
function could give a boost in performance.

h{ hs if Bahdanau
score(hg, hs) = { h] W,hs if Luong
v tanh(W,[hs; hs))  if Vinyals
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Figure 2: On the left, the chart displays the results of the attention scoring using the method from
Vinyals et al. [25]]. Conversely, the chart on the right displays the results of attention scoring using
the method from Luong et. al.

Our interpretation of visualizations [2]is that as the model is predicting each word in the decoder, it
simply looks back at the first word in the encoder. Since the encoder inputs were flipped, this first
word represents the last hidden state of the encoder, which is disappointing since the goal of using
attention is to allow the model to look beyond that last hidden state for more contextual information.

Figure [2above does spark another hypotheses. Perplexity scores on the validation set determined
when to stop training, and it seems that the Vinyals attention model is under-trained. However, the
Luong model has less hyperparameters, and thus actually trains faster. It is suitable to say, based
on these visualizations and reasoning, Luong attention is better suited when smaller data sets are
available.

4.3 Cross Training and Qualitative Results

The core concept to cross-training was by modifying the cost function directly, using the following
equations.

M
J = Zm(t) CE®y®,5®) 3)

t=1

o 0.03 if Movie data
~ 1.0 if Trump data

We used the movie from from Cornell Movie Dialogue Corpus [[6]. We chose this corpus specifically
because Serban et al. produced successful results using it[18]. We also considered using the Ubuntu
Data Corpus [13]], which has nearly a million Q/A pairs; however, we had already mitigated the
challenge of finding additional cross-training data sufficiently.

These are qualitative results we have generated from three separate models:



Query

Vinyals -
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Luong -
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Do we have a trade deficit | we have a trade deficit . we owe japan . no.

with China?

Nuclear weapons, iran, It‘samess. iran is taking our the army .
and war have what in economic dollars dollars .

common?

The president is terrible it is time to be president . | i beat hillary clinton elitism

Crooked hillary is running
for president, will she
win?

crookedbhillary is unfit to
serve . bigleaguetruth
debate

hillary will change the
voter debate .

hillary clinton wants to
makeamericagreatagain

bigleaguetruth debate

Especially when we heavily weighted movie data, we noticed the generation of conversational
responses tend to generate generic, safe responses regardless of the input, such as "i don’t know."
As we shifted the importance over to just using the custom Trump Data, common phrases from our
data, such as makeamericagreat" and "competition" would continually show up. To combat this issue,
we looked into work from [[10] which suggested using Maximum Mutual Information (MMI) as
the objective function in neural models, rather than the traditional objective function of lowering
perplexity. We did not have time to implement such a cost function, but it is certainly something to
explore in the future to produce more diversity, perhaps allowing us to take advantage of even larger
datasets, such as the Ubuntu Dialog Corpus [|13]].

We found that things that are political in nature tend to have better outcomes, which makes sense
because we specifically trained on political sentences and purposely removed sentences related to his
business, hotels, and other investments.

4.4 Pointer Sentinel

Training PSMM has proven to be sensitive to parameter tuning; however, the biggest surprise came
when introducing the Adam Optimizer. Adam Optimizer (with learning rate 0.005) in replacement
of Stochastic Gradient Descent results in exploding gradients shortly into training. By closely
monitoring the mixture gate, we see that g slowly saturates to 0.99 during initial stages of training,
and then as soon as a single step is taken towards reducing the mixture gate, it drops close to zero
once, and then gradients explode the proceeding update. Adam Optimizer leverages momentum and
velocity, which are perhaps overcompensating within the PSMM architecture.

Tuning regularization parameters was critical for training. Beginning with variational inference
based regularization as described by Merity, with 0.5 on the input to each RNN layer and 0.5 on the
final output resulted in g toggling correctly early on in training, but both the validation and training
perplexities would not go below 200. We found 0.5 to be too much regularization. On the other
spectrum, too little regularization, and g would remain saturated at 0.99 throughout the the entirety of
training. With too little regularization, the model was over-fitting to always use the RNN distribution.
A dropout value of 0.8 was optimal. Had we had more time remaining, we would repeat the same test
and just increasing the hidden state size from 200 to 650, likely achieving much closer scores to the
perplexity of 80.6 produced by Merity [16]. However, the purpose of this test was a direct comparison
with similar hyper-parameters, and it is only the relative difference that we were interpreting rather
than the absolute value.

Having a stable implementation of PSMM, the next goal was to produce a proof of concept for
adapting PSMM to a Seq2Seq model. Applying the unmodified PSSM as is, the visualizations
indicated that the mixture gate was learning incorrectly. The pointer distribution was being used for
common words such as ’to’, ’the’, and ’<eos>"—while words such as 'mr.” or ’dr.” rarely entered the
distribution. One possible explanation is that s could not map the desired behavior, and learning each
training step was competing with the next. The hidden state of the LSTM’s has a variable number of
forward propagations, and that variance is not being captured in this overly biased model.



H Model decoder length  Hidden Size layers epochs train  validation  test H

Zaremba, et. al. n/a 200 2 13 37.99 121.39 11591
PSMM 1 200 2 13 60.41 95.89 92.17
Modified PSMM 10 200 2 7 82.77 107.14 101.93

Table 2: Two PSMM models as compared to the baseline model

The next intuitive approach was extending s to be a matrix of hidden-state by decoder length. In this
case, we would hope that introducing a new dimension allows s to map all relationships regarding
the variable number of forward propagations, while the affine transformation leading into the tanh
function would learn general rules regarding when to turn on the mixture gate. We call this model
Modified PSMM, and the results are in the above table.

The introduction of one more dimension to s shows improvements to map correct over the baseline
model. As indicated by visualizations, there are relatively more errors within the gating function in
the Modified PSMM model than when the decoder length is simply 1. We hypothesize, that although
the model has difficulty balancing the mixture gate, there is still some beneficial learning that has
occurred when utilizing the mixture gate. Lastly, the processing speed for Modified PSMM was 250
words per second, whereas PSMM only processed at 130 words per second. This was expected, due
to the parallelism we have introduced into the model.

5 Conclusion

The main reason for implementing the Pointer Sentinel Mixture model was to eventually integrate its
benefits into the encoder decoder model to allow predictions on rare or OoV words. Thus, augmenting
PSMM to generalize to variable length decoding would certainly be the next step given more time.

Separately, in order to improve the performance of the Seq2Seq model, we would have liked to turn
to adding the notion of intention [26] to the network where hidden state from the encoder network is
fed into an third RNN that models the intention process. Specifically, this dynamic process looks
at the back and forth nature of the a conversation where one turn is dependent on the intention in
the previous turn. Similarly, work from [21]] seems directly applicable in generating context-aware
utterances that take into account previous dialog between the two users. This is especially true since
their training was heavily influenced by the use of Twitter data, similar to our data set. Furthermore,
we would return to adding Beam Search on Trumpbot, following through with our initial efforts to do
SO.

On the Pointer Model side, we believe there are large gains to be made from simply increasing the
hidden states size from 200 to 650 since this would directly increase the parameters in the system
to model conversation. In order to fully replicate the original paper’s regularization [16]], and also
to combat this increased size, we would also plan to add Zoneout regularization. Evaluating the
Seq2Seq model was difficult when the effectiveness of hyperparameters since perplexity scores were
insufficient. Adding more measures of accuracy to gauge training quality, such as BLEU scores,
would thus enable us to additionally automate a full hyperparameter search.
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