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Abstract: In this paper we present an implementation of the multi-perspective con-
text matching neural architecture for question answering on the Stanford Question Answering
Dataset (SQuAD). We performed training on a set of 81,400 examples and achieved an F1 score
of 47.516 % and EM of 34.249 % on an unseen test set with a compact model of only 173,882
trainable parameters. We used 100 dimensional GloVe word vector embeddings as the input
to our model. We describe the model in detail, present our training strategy and results, and
discuss hyperparameter selection. An analysis of probability distributions over a few example
answers is also presented to further explore the model’s behavior. A simple comparator baseline
is also implemented and studied.
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1 Introduction

Machine comprehension is a critical part of a large number of Natural Language Processing
applications such as virtual assistants, chatbots, and information retrieval systems. Until re-
cently, there has not been an accessible dataset to evaluate models on. [1] The development
of the Stanford Question Answering Dataset (SQuAD) enables researches to develop and test
realistic models of machine comprehension.

In this paper, we implement a modification of the multi-perspective context matching archi-
tecture for machine comprehension that was first presented in [1]. We also implement a simple
a baseline model for verification. Our multi-perspective architecture uses pretrained GloVe
vectors, bidirectional LSTMs and a very important matching layer that tries to understand
the relationship between the given context paragraph, question, and answer. For each word in
the context passage, its representation is matched against the question representation from a
number of perspectives, which are then used in parallel to make an answer prediction.

2 Datasets

2.1 The Stanford Question Answering Dataset (SQuAD)

The SQuAD contains 100K question-answer pairs (along with a context paragraph). The an-
swer is contained within a span in the context paragraph (i.e. it does not rely on prior knowledge
outside of the context and does not contain tokens split up over the context). A histogram of
the context paragraph lengths is shown in Figure 2. For questions, the histogram is shown in
Figure 1. The following is an example question-answer-context pair from the SQuAD

Question: Why was Tesla returned to Gospic?
Context: On 24 March 1879, Tesla was returned to Gospic under police guard for not
having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after
contracting an unspecified illness (although some sources say that he died of a stroke).
During that year, Tesla taught a large class of students in his old school, Higher Real
Gymnasium, in Gospic.
Answer: not having a residence permit (from the context span 14 - 18 that is bolded
above)

An important aspect required to model the dataset is the length of context and questions. While
we would ideally like to create a model that could handle questions and context paragraphs
of arbitary length, the models described in later sections impose a set sequence length and
enforce this using padding or clipping. To reduce memory requirements and calculation size,
we desired a small sequence length that was still able to handle the majority of questions. To
better visualise the dataset we created histograms of the length of the sequences, as shown
in figures x and y. This let us pick sequence lengths that ensured the model was fast and
memory efficient while losing (minimal) accuracy. We did not have access to the test dataset
and assumed that it followed a similar distribution.
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Figure 1: The histogram of question lengths in the training set.

Figure 2: The histogram of context paragraph lengths in the training set.

2.2 Global Vectors for Word Representation (GloVe)

We use 100 dimensional word vectors trained on the 6GB word corpora (Wikipedia + Gigaword)
using the GloVe algorithm. Rather than representing individual words in the vocabulary, we
represent words as vectors of smaller dimensionality that capture meaning. Not only does
this speed up huge matrix multiplications, the word vectors capture and model relationships
between words. One challenge with the pre trained word vectors is that many words in the
SQuAD dataset do not appear in the vocabulary, which results in many UNK tokens. To work
around this, we predict a span and then extract the original tokens from the context (even
if our model doesn’t understand them). This means that if it predicts an UNK, the correct
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corresponding token will be inserted in the answer. We are using a vocabulary of 115,613 words,
which produces the unknown word token very rarely on our dataset.

3 Baseline model

For initial development and validation, we implement a simple baseline model with attention.
The schematic of the model is shown below. We do not go into further detail as this model was
only a baseline. A very thorough description of our advanced model can be found in Section 4.

1. Question and context embeddings are Q and C are loaded.

2. Question is passed through a bidirectional LSTM and Q′ generated.

3. Context is passed through a different bidirectional LSTM and C ′ generated.

4. Attention matrix A is calculated for each pair of a context word and a question word as
a dot product between their hidden states and then softmaxed.

5. A modified version of the context C ′ is calculated as AQ′ and concatenated to the original
context C ′.

6. A simple softmax with one neuron classification is done on the concatenated matrix to
obtain the probability that a particular context word is a start of the answer,

7. The same is done with a separate classifier for the end of the answer.

4 Multi-perspective context matching model

The main model we used in this project was a modified version of the multi-perspective context
matching algorithm presented in [1]. A diagram of the model’s architecture taken from [1] is
shown in Figure 3.

4.1 Naming convention

We implemented a modified version of the multi-perspective context matching algorithm pre-
sented in [1]. In this section, we present the detailed inner mathematics of the model. We
will be explicitly stating which indices are summed over rather than using matrix and vector
notation as in our opinion it is clearer.

Let the context C be a matrix {Cace}, where a is the index of a particular example in
a batch, c the index of a particular word in the context paragraph, and e the index of the
particular component of the word embeddings representation (in our case GloVe). Cace is then
the eth component of the word embedding of the cth word of the context of example a. Let Q
be an equivalently defined matrix for the question, such that {Qaqe} are its elements.
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Figure 3: A diagram of the multi-perspective context matching algorithm for text comprehen-
sion implemented in this project. The figure comes from the original paper [1].

4.2 Filter layer

The context as a whole contains a lot of information. A question typically asks only for a
specific small section of the context. To highlight the relevant parts of the context, we use a
filter layer, as done in [1].

The filter matrix Rqc is defined as

Raqc =
∑
e

QaqeCace , (1)

i.e. for a particular example a, the filter matrix for a particular context word c and question word
q is the dot product of the two word embeddings. As the word embeddings contain semantic
and syntactic information about the words, a high dot product signifies high relatedness of the
words. Even more directly, the filter matrix will be high if the word in the context c is the same
as the question word q. This helps identifying the relevant parts of the context, and works as
attention.

To simplify the resulting object, let the filter vector rac be

rac = max
q

Raqc , (2)

i.e. the filter vector for a particular context word c is the maximum dot product of this word
with every word in the question. For example, if a similar word appears in the question, the
word is highlighted in the context. To apply this in the context, we perform

C ′
ace = racCace .
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The context words therefore get highlighted by the amount of similarity to the most similar
word in the question.

4.3 Initial encoding using independent LSTMs

As the next step, we applied a bidirectional LSTM on the filtered context representation C ′
ace,

along the c dimension. The LSTM moves along the words of the context and at each word
generates an output vector of length of our hidden state length. Effectively, the C ′

ace is therefore
mapped by the forward run of the LSTM to another matrix C̃ fw

ach, where the last index h
now indexes along the newly generated hidden state by the LSTM. We applied the LSTM
bidirectionally, and therefore also got the backwards pass result C̃bw

ach. Let the final hidden state
of the forward pass of the LSTM be c̃fw

ah and c̃bw
ah for the backwards pass.

A separate bidirectional LSTM with new parameters was then applied to the original ques-
tion representation (no filtration applied to the question) {Qaqe}, equivalently generating Q̃fw

aqh,

Q̃bw
aqh, and q̃fw

ah, q̃bw
ah .

These new representations of the word vectors generated by the LSTMs are better suited for
our task as they are aware and influenced by the surrounding words in the context and question
respectively. They are more custom-fitted than the generically generated word embeddings such
as GloVe - instead, they are the specific context and question sensitive word embeddings.

4.4 Matching

The crucial part of the model is the matching layer. In the matching layer, dot products of the
results of the LSTMs on the question and filtered context representations are generated, with
an a important middle step of applying a perspective.

A perspective Ph is a vector of hidden state index h. To apply a perspective P to a particular
word embedding (might have been through LSTMs or other transformations first), one performs

V P
h = VhPh . (3)

In other words, a vector is point-wise multiplied by a perspective vector. Perspective vectors
are in our model represented as rows of a matrix W . 6 different matching representations are
then generated by applying perspective vectors and looking at dot products on different input
vectors. They are described in detail as follows.

4.4.1 Full matching

C̃ fw
ach and C̃bw

ach are used. We will only describe the procedure on one of them, as the other is
equivalent. These are matched with the last hidden state of the forward pass on the question
q̃fw
ah, or its backward pass q̃bw

ah . Let the matrix of projections be W . First an auxiliary matrix is
calculated as

Uakch = WkhC̃
fw
ach , (4)

where k is the k-th projections vector in the projection matrix W . The vector U is the projection
of the context word c onto the projection k. The second auxiliary matrix is defined as

Vakh = Wkhq̃
fw
ah , (5)
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which is the projection of the last hidden state of the question LSTM forwards pass onto the
projection direction k. Then, the result of the full matching is obtained as

Makc =
∑
h

UakchVakh . (6)

The result can be intuitively understood as the dot product between each context word c
projected into the projection k with the last hidden state of the LSTM applied to the question
projected into the same projection k.

Two matching matrices are generated. M full,fw
akc for the forward passes using C̃ fw

ach, q̃fw
ah and

projection matrix W1, and M full,bw
akc for the backwards passes using C̃bw

ach, q̃bw
ah and projection

matrix W2.
This matching is sensitive for questions where the last hidden state on either side is sufficient

for answering.

4.4.2 Max-pooling matching

Here, the auxiliary matrix V is calculated from the LSTM outputs along the question Q̃fw
aqh and

Q̃bw
aqh. It is calculated as

Vakqh = WkhQ̃
fw
aqh , (7)

for the forwards pass and equivalently for the backwards one. The matching is then calculated
as

Makc = max
q

(∑
h

UakchVakqh

)
. (8)

It therefore gives the highest dot product matching between k projection of the context word c
and the k projection of the question word q over all question words. This matching allows us
to use information from the middle of the question as well.

Two matching matrices are generated again – Mmaxp,fw
akc with W3 and Mmaxp,bw

akc with W4.

4.4.3 Mean-pooling matching

The mean-pooling works the same as max-pooling, with the only difference coming at how the
matching is calculated from the auxiliary matrices. Here,

Makc = meanq

(∑
h

UakchVakqh

)
. (9)

The average matching over all question words is then obtained. This gives a matching that is
not focused on a particular question word, but rather looks at the average over all question
words.

Two matching matrices are generated – Mmeanp,fw
akc with W5 and Mmeanp,bw

akc with W6.

4.5 Aggregation

All six perspective matchings use separate matrices of perspectives W1, ...,W6. Each matrix
contains l projection vectors, that are all separately trainable. The big advantage of the model
lies in the ability to choose the important directions in the dataset using this approach.
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The resulting matchings are concatenated along the k direction into a large matching vector

Malc =
[
M full,fw

a c ,M full,bw
a c ,Mmaxp,fw

a c ,Mmaxp,bw
a c ,Mmeanp,fw

a c ,Mmeanp,bw
a c

]
(10)

where is the index over which the matrices are concatenated. The matrix now has dimension
[batch, 6× perspectives, context].

4.6 Final LSTM on the matchings

The matching matrix Malc aggregates information about the relationship between the context
and question at different ”directions” of the embedding space and generated using different
summing method as described above. To let the different matchings interact, we apply a
bidirectional LSTM on Malc along the c (context words) direction. At each step, a state of size
6×perspectives is transformed into a new vector. The outputs of the LSTM are Afw

ach and Abw
ach

for the forward and backward passes respectively. We then concatenate them along the hidden
direction h to a knowledge matrix

Kach =
[
Afw

ac , A
bw
ac

]
. (11)

This matrix now represent our complete relevant information about the context word c.

4.7 Classification on knowledge K

The last is applying a single linear neuron to the knowledge Kach to get a real number for
each position in the context c representing our belief that the position is the start of the
answer. The same classification is done with different matrices for the end of the answer. The
assumption here is that the start and end predictions are independent at the last step, and that
all dependence has been captured in the knowledge K.

The predictions are

Startac =
∑
h

KachW
start
hc + bstart

c , (12)

Stopac =
∑
h

KachW
stop
hc + bstop

c , (13)

for matrices W start
hc and W stop

hc and bias vectors bstart
c and bstop

c . The softmax is applied to both
vectors to get probabilities out.

4.8 Loss

We are using the cross-entropy loss. Let the correct one-hot start label be ŷ ˚start
ac , and the

correct one-hot end label be ŷ ˚stop
ac . Let the softmax predictions be y ˚start

ac and y ˚stop
ac . Then the

cross-entropy loss per batch is

CE = −meana

(∑
c

ŷ
˚start

ac y
˚start

ac + ŷ
˚stop

ac y
˚stop

ac

)
(14)

where we add the losses for start and stop predictions over the context paragraph. Proper
masking must be applied in order not to count predictions
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4.9 Implementation

We have implemented our models and necessary infrastructure in Python, making an extensive
use of tensorflow and numpy. We implement padding of questions and contexts shorter
than the maximum sizes. We also implement dropout in order to provide regularization and
increase generalization of the model. Our matrices are initialized using the Xavier initialization
where applicable. To prevent gradient explosions, we clip gradients at a maximum global
norm value and rescale them accordingly using tensorflow functions. However, practically,
gradient clipping was not needed beyond a few initial batches. We also made extensive use of
the tensorflow.einsum function that allowed us to write very general summations between
multidimensional matrices.

5 Experiments

We experimented with several different architectures that we tried to build on our own by
implementing various combinations of LSTMs and attention-like mechanisms. These attempts
were relatively unsuccessful. In the end, we converged to two models:

1. Baseline mode

2. Multi-perspective context matching model

The details of their architecture are described in Section 3 and Section 4 respectively.
In our project, we exclusively used GloVe vectors of size 100 and vocabulary size 115,613.

We initially trained them as well, though discontinued doing so as it proved to be very slow and
not sufficiently beneficial for the loss decrease. A very easy extension of our project would be
increasing the size of the word embeddings and the size of the vocabulary, reducing the number
of unknown words.

5.1 Overfitting on a small dataset

For a new version of the model, we verified its functionality by overfitting on a very small
dataset, running the code locally on a our laptops. This provided a guarantee that the model
is actually capable of learning.

5.2 Baseline experiments

The baseline model did not perform well and the best score we achieved on the developmental
set was F1 = 7.8 % and EM = 1.798 %. Its training was most likely hindered by a set of masking
bugs in the model that we discovered. The final configuration of the baseline model was learning
rate 0.02, batch size 200, dropout 0.1, maximum context length 250, maximum question length
20, hidden state size 75. The model had 995, 750 trainable parameters and its learning curve
is shown in Figure 4.

Despite the number of parameters being much higher than our multi-perspective model, the
performance was significantly worse. During training, the typical size of the global norm of
the gradient was between 0.5 and 4.0, varying wildly. The epoch took ≈ 2000 s to run on the
NVidia Tesla M60 GPU.
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Figure 4: Baseline learning curve. The learning curve shows a very suboptimal model and
learning. This plot is shown for comparison with the learning of our more advanced model.
The epoch are separated by red vertical lines.

5.3 Multi-perspective matching experiments

We performed numerous experiments on the hyperparameters of our advanced model - the
multi-perspective matching. We experimented with learning rates, dropouts, numbers of per-
spectives, and sizes of hidden layers. The best results came from the model with only 173,882
parameters – an order of magnitude lower than the baseline model. This was a significantly
smaller model than the one implemented in the original paper [1].

The models parameters were as follows: initial LSTM hidden size 80, final LSTM hidden
size 50, 13 perspectives, maximum context length 300, maximum question length 22, batch
size 100, learning rate 0.01 and dropout 0.1. We extensively experimented with larger models,
however, the training was very slow and the GPU was sometimes running out of memory, as the
Multi-perspective matching involves large four-dimensional matrices and operations on them.

Our training is summarized in Figure 5. The plot shows a blue learning curve that was
generating by training with dropout 0.1 for 7 full epochs. Each epoch took ≈ 6000 s on the
NVidia Tesla M60 GPU. After the model started plateauing, we set the dropout to 0.0 in
order to further boost the performance and continued training. The loss suddenly dropped as
the model effectively gained 10 % additional pretrained parameters. With the zero
dropout, we continued training for another 3 epochs, during which our F1 and EM on the
developmental set were still increasing.

The full evolution of the F1 and EM scores on the unseen developmental set are shown in
Figure 6 and Figure 7 respectively. On an unseen test dataset, we achieved F1 = 47.516 %
and EM = 34.249 %, after 7 epoch of training with dropout 0.1 and 3 with 0 dropout, as
shown in Figure 5.
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Figure 5: Learning curve for the multi-perspective matching model. Epoch are separated by
the vertical lines. The blue curve is a our model with dropout 0.1 trained until epoch 7, where it
starts plateauing. To boost performance, we set dropout to 0.0 and continued training, shown
in red. That further boosted our performance. The green curve shows a learning curve for a
larger model that started plateauing very early and was stopped.

6 Predictions

A good way to visualize the output of the model is to show the probability distribution over
words of the context for the start and end of the answer. We present three examples that
illustrate the behavior of our model.

6.1 Example 1 – multiple occurrences of trigger words

Question: Which hotel did the Broncos use for Super Bowl 50?
Context: The Panthers used the San Jose State practice facility and stayed at the San
Jose Marriott . The Broncos practiced at Stanford University and stayed at the Santa Clara Marriott.
Answer: Santa Clara Marriott
The probabilities for different starts and ends of the answer are shown in Figure 8. This case

illustrates that the network is aware of the surroundings of words. The word Marriott triggers
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Figure 6: The evolution of the F1 score on an unseen developmental dataset for our multi-
perspective model during training. The red shaded region corresponds to the epochs during
which dropout was set to 0.

Figure 7: The evolution of the EM (exact matching) score on an unseen developmental dataset
for our multi-perspective model during training. The red shaded region corresponds to the
epochs during which dropout was set to 0.

the end prediction even outside of the answer, though with much lower probability. The word
San triggers the start prediction, as it is close in the embedding space and usage to the word
Santa, which actually is the start of the answer. It is clear that the model pays attention to
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the surroundings of a word.

Figure 8: Probability that particular words in the context paragraph are the start and end of
the answer.

6.2 Example 2 – semantic proximity

Question: How long would the astronauts be project to be able to stay on the moon
for in the latter missions?
Context: The contracted batch of 15 Saturn UNK were enough for lunar landing mis-
sions through Apollo 20 . NASA publicized a preliminary list of eight more planned
landing sites , with plans to increase the mass of the UNK and LM for the last five
missions , along with the payload capacity of the Saturn V. These final missions would
combine the I and J types in the 1967 list , allowing the CMP to operate a package
of lunar orbital sensors and cameras while his companions were on the surface , and
allowing them to stay on the Moon for over three days . These missions would also
carry the Lunar Roving Vehicle ( UNK ) increasing the exploration area and allowing
televised UNK of the LM . Also , the Block II spacesuit was revised for the extended
missions to allow greater flexibility and visibility for driving the UNK .
Answer: over three days

Figure 9 shows the resulting probabilities. The answer over three days has the highest
probability, however, the alternative three days is also comparable. The two answers are very
close semantically and three days is not strictly wrong. Therefore this example shows that the
resulting probabilities retain the semantic proximity of related answers. The answer itself spans
the segment between the maximum probability for start and the maximum probability for end.
The semantic proximity of the answers reflects in the probabilities.
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Figure 9: Probability that particular words in the context paragraph are the start and end of
the answer.

6.3 Example 3 – a complicated answer

Question: What is partially responsible for weakened immune response in older indi-
viduals ?
Context: It is conjectured that a progressive decline in hormone levels with age
is partially responsible for weakened immune responses in aging individuals . Conversely
, some hormones are regulated by the immune system , notably thyroid hormone activity
. The UNK decline in immune function is also related to decreasing vitamin D levels
in the elderly . As people age , two things happen that negatively affect their vitamin
D levels . First , they stay indoors more due to decreased activity levels . This means
that they get less sun and therefore produce less UNK via UVB radiation . Second , as
a person ages the skin becomes less adept at producing vitamin D .
Answer: a progressive decline in hormone levels with age

The context paragraph is quite technical and so is the question. The answer is also almost a
full sentence. The probabilities shown in Figure 10 show that there is a quite a lot of potential
variability in the answer. A very comparably probable answer would be progressive decline
in hormone levels with age, with the omission of the leading particle a. This aligns very well
with its semantic irrelevance to the meaning of the answer. Another possibility would be a
progressive decline in hormone levels which also makes sense. This example shows that the
model has an understanding of the meaning of the text, and the high probability answers are
all meaningful.
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Figure 10: Probability that particular words in the context paragraph are the start and end of
the answer.

7 Discussion and Results

We implemented a simple baseline model and a multi-perspective matching model for question
answering on the SQuAD dataset. We performed a lot of model building and testing, exploring
the hyperparameter space of our models. In the end, we were able to achieve F1 = 47.516 %
and EM = 34.249 % on an unseen test set with relatively small multi-perspective matching
model of only 173,882 parameters. The model significantly outperformed our baseline model,
despite the baseline having an order of magnitude more trainable parameters.

We originally used the incorrect GloVe file when evaluating our answer on the development
and test set, as we did not see the announcement correcting them. Using the correct word
vectors increased performance and explained some of the anomalies that we saw earlier.

To further boost our performance, we trained our model with dropout 0.1 until the learning
curve plateaued and then resumed training with zero dropout. This effectively increased the
number of parameters in the system by 10 % and significantly lifted our F1 and EM. With
more time, we would certainly explore different word embedding and dictionary sizes.

The analysis of the probabilities over context paragraphs showed that the trained model is
well aligned with human intuition for what the answers should be. Looking at the next most
probable candidates, one often sees answers that are very close in terms of information content
and not only superficially.
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