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Abstract

We implement a system based on the Dynamic Coattention Network outlined in
Xiong et al. to address the Stanford Question Answering Dataset (SQuAD), learn-
ing to find continuous answer spans for prompted questions contained in a context
document. We further experiment with variations on the original architecture, in-
cluding the use of BiLSTMs and the addition of a maxout layer in the coattention
encoder. We find that our attempts to simultaneously incorporate BiLSTMs and
avoid a significant increase in the number of parameters result in reduced perfor-
mance. We also find that the encoder maxout layer provides a small but consistent
performance boost. Our final model incorporates the encoder maxout layer and
obtains a test set F1 score of 69.22% and EM of 58.764%.

1 Introduction

The goal of our project was to achieve performance on the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al.). Specifically, we seek to accurately predict an answer to a question that
refers to a specific context paragraph, under the constraint that the answer is fully contained within
the context paragraph, and is continuous. Performance is evaluated with the standard tokenwise F1
score and EM (exact match) percentage over the predicted answers.

The dataset consists of 100,000+ question answer pairs derived from 500+ Wikipedia articles. The
articles are sampled randomly from the 10,000 articles ordered by page rank, and question answer
pairs were created using the Amazon mechanical turk service. The dataset is ideal for the reading
comprehension task both due to its quality and its size - unlike datasets like bAbI, the data is human-
generated, and the number of examples is very large for the quality of the data.

2 Related Work

The SQuAD dataset problem has been approached using a variety of techniques. For instance, the
Match-LSTM model in conjunction with Pointer Net was shown to be performant on the dataset
(Wang et al.), as well as Bi-directional Attention Flow models (Seo et al.). One of the common
approaches among all models is to first encode a question-document importance vector for each
example, and then make use of the encoding in some intelligent way to output a prediction.

We based our implementation on the Dynamic Coattention Network (DCN), which has several
unique innovations but shares the same overall pattern as above: it encodes a relationship between
the question and context document and proceeds to predict start and end tokens for the answer span.

Finally, the DCN above, as well our main addition to the model, draw heavily upon Maxout Net-
works, a network architecture that allows a model to learn multiple variants of the weights it will
use to try to encode a relationship between input and desired output.
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Figure 1: Architecture of Coattention Encoder - the highlighted red portion is our contribution and is not a
feature of the baseline DCN

3 Approach

3.1 Dynamic Coattention Networks

We implemented a DCN based on the architecture presented in ”Dynamic Coattention Networks for
Question Answering” and experimented with variations on the original architecture.

3.1.1 DCN Overview

Figure 2: Dynamic Pointer Decoder and
Highway Maxout Network Architecture

The DCN is comprised of two components - the Coat-
tention Encoder and the Dynamic Pointer Decoder - that
we will briefly describe before expanding on the changes
we made. The DCN first encodes the question and docu-
ment by feeding the input into a single LSTM. To allow
for variation between the question and document encod-
ing space, the LSTM output for the question is processed
by an additional non-linear projection layer. We denote
the question and document encodings as Q and D, re-
spectively. These encodings are multiplied to acquire the
affinity matrix L between the question and the document.

We then softmax normalize L row-wise and column-wise
to produce attention weights AQ and AD respectively.
We use the attention weights to acquire the attention con-
texts DAQ, denoted CQ, and QAD, which we combine
into a later operation for increased performance. We de-
fine the coattention context as CD = [Q;CQ]AD. The
notation [a; b] signifies a concatenation of a and b. The
coattention context is given as input to a final BiLSTM,
the output of which forms our coattention encoding U .

The task of the Dynamic Decoder is to determine the
start and end indices of the answer in the input document,
given the coattention encoding U as input. It takes an
iterative approach, alternating between acquiring an up-
dated guess for the start and end indices using two sep-
arate Highway Maxout Networks with identical architec-
ture described below.
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At each stage, an overlying LSTM gives its current hidden state and the two previous guesses usi−1

and uei−1
for the start and end index as input to one of the HMNs. After several maxout layers, we

run argmax on the output of the HMN to find the new most likely candidate for the start or end
index, and use that as input for the next HMN. Once we reach the iteration limit, we consider the
start and end indices at that time to be our result.

One of the more complicated portions of this network in terms of implementation was the pair
of Highway Maxout Networks. While Tensorflow has a built-in maxout network, we built ours
from scratch in order to handle batching. The weights for each layer of the maxout network when
unbatched were 3-dimensional in the math that the algorithm was based off of, but in practice this
made multiplication difficult. Rather than further complicate things by imposing a fourth dimension
for batching we expanded in two dimensions to accommodate the additional information. This
enabled our matrix multiplications, but required reshaping at every layer of the network.

3.1.2 Dropout

The original DCN paper mentions the use of dropout throughout the network. However, it does give
details as to the implementation of the dropout, or which layers have dropout applied. We experi-
mented with adding dropout to many parts of the model, but found the best performance by putting
dropout on all inputs to LSTM units (Zaremba et al.), and inputs to the Maxout layers specifically.
In Maxout Networks (Goodfellow et al., 2013), the authors discuss the power of applying dropout
and maxout together to allow a network to learn complex approximations of the functions we desire
to learn, and we found that applying dropout to our model helped greatly. It enabled us to avoid
overfitting and we retained a low validation loss throughout our optimization.

3.1.3 Encoder Maxout

Our main change to the architecture is the application of a maxout layer to the encoding of the
question matrix Q. In the original architecture, Q was calculated as follows:

Q = tanh(W (Q)Q′ + b(Q))

Here, Q′ is the encoding of the question tokens retrieved after running the word vectors for each
token through a Recurrent Neural Network with LSTM units. In our case, we add a dimension p to
our weight matrix W (Q) and bias b(Q), and perform a max along this dimension after computing the
multiplication and addition result. This can be expressed as:

Q = max
PoolDim

(tanh(W
(Q)
P Q′ + b

(Q)
P ))

Where W
(Q)
P has the same shape as W (Q) but with an added (leftmost) dimension of size p and

the same is true of b(Q)
P . We still use the tanh calculation, but by performing a max over this added

dimension, we ideally provide our model the capacity to learn multiple projections and take the most
relevant information from each. The motivation for this is to have greater flexibility to address the
different types of questions in the SQuAD data differently to obtain a more expressive coattention
matrix and knowledge representation.

3.2 Loss and Optimizer

We implemented our loss as the sum of the two sublosses for the predicted start position and end
position of the answer span. We note that the structure of the SQuAD dataset, where an answer is a
single span within the context document, allows us to indirectly predict answers in this manner. Our
final prediction for each position is given as the final output of each HMN, a vector of weights over
each word in the context document corresponding to the likelihood of each word being the actual
position of the span. A predication is made by an argmax over these vectors. As in the original
paper, we use a softmax cross entropy loss on our output weights for each subloss, where the labels
are a one-hot encoding of the actual positions for the start and end of an answer span. The loss is
averaged over each batch.
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We note that this loss, while relatively simple and useful, does not directly take into account how
far off the actual predicted span limits are. It makes no difference whether the predicted span limit
is near or far from the actual position, as the cross entropy loss simply considers the weight placed
on the actual span limit’s position.

For our optimizer we used the existing Tensorflow implementation of Adam, an optimizer with
adaptable learning rates and momentum (Kingma et al.). The Adam optimizer generally requires
very little hyperparameter tuning, as typically the only adjusted hyperparameter is the initial learning
rate.

3.3 GLoVe vectors

We developed our system using pretrained GLoVe word vectors (Pennington et al.) as the initial
encoding for question and document tokens. We built and tested our model using 100-dimensional
vectors from a 6 billion token crawl, and switched to the 300-dimensional vectors from a 840 billion
token crawl once we had our system running smoothly. We saw a noticeable performance increase
after doing so, since the system had more information with which to understand the tokens it was
receiving as input.

3.4 Implementation Details and Hyperparameters

As in the original paper, the size of all of our RNN hidden layers was 200, and our maxout pool
size was 16. We used a learning rate of 0.001, and experimented with dropout probabilities of 0.15
and 0.25. We processed data in batches of 64 examples, and our dynamic pointer decoder ran for 4
iterations.

Our initialization schemes for weights and biases in our network was consistent throughout. Weights
used Xavier initialization while biases were initialized with zeros, with the exception of LSTM for-
get gates. These were initialized to 1 to encourage LSTM cells to retain state initially, as recom-
mended by Jozefowicz et al. Hidden states for LSTMs were initialized to zeros and the encoding
sentinel vectors were initialized randomly, as per the original paper. The start and end index predic-
tions in the decoder were initialized as the beginning and end of the context documents respectively.

In our training we used batches that contained questions and documents of varying lengths. To allow
Tensorflow to easily handle batch operations, we padded the questions and context documents to the
maximum sequence length in the batch. To allow for this, we implemented masking throughout our
model with the actual sequence lengths.

We note that as a special case, the masking value applied to out of bounds tokens was −1 × e30

before feeding into a softmax layer (exponential masking). This is to prevent the softmax from
artificially inflating the probabilities of tokens we know cannot be part of the answer.

The training was done on an Nvidia GTX 1070 for up to 10 epochs and each epoch with batch size
64 took roughly 25 minutes. Validation F1 and EM scores were computed on random samples of
size 100 every 100 iterations. The validation loss over the full validation set was computed every
400 iterations. Each epoch was 1271 iterations.
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4 Experiments and Results

4.1 Learning Rate

Figure 3: Gradient norm over training hours. Light purple had an initial learning rate more than two orders of
magnitudes from 0.001. Teal and orange had no dropout and were overfitting. Other models were remarkably
consistent across a wide range of changes.

Adam performed well with little hyperparameter tuning. The one optimizer hyperparameter we
experimented with was the initial learning rate, and even this proved to be stable within roughly an
order of magnitude. Through experimentation we found initial learning rates around 0.001 provided
reliable training. Gradient norms were very consistent as well, remaining mostly within the 2-7
range, even across different variations on our model. From this extremely consistent gradient range
we decided on 10 as the maximum for our gradient clipping window.

4.2 Overfitting and Dropout

Figure 4: Smoothed training loss over hours. Brown has no dropout and significant overfitting (min val loss
3.6). Purple has extreme dropout and exhibits underfitting. Green is our final dropout setup (min val loss 2.7).

The original paper mentions the inclusion of usage of dropout and we found it to be vital to the
performance of our model. Initial implementations without dropout exhibited strong overfitting on
the training set, approaching a training loss of 0.5 over 10 epochs while the validation loss rebound
from a low of 3.6 back to 6.1. As mentioned previously, we experimented with several methods
of applying dropout. In one case we selectively applied dropout to only a few parts of the encoder
or decoder, which was not enough to resolve the overfitting. On the other end of the spectrum we
experimented with extreme dropout including on gates within the LSTM. This drastically cut the
expressive power of our model and it instead exhibited underfitting. Our experimentation and the
existing literature on LSTMs and maxout networks (Zaremba et al.), (Goodfellow et al.) led us to
our final setup where we apply dropout on the inputs of the LSTM cells and maxout layers, with the
exception of previous hidden state inputs (i.e. no horizontal dropout).
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Figure 5: Val loss over epochs, corresponds to Figure 4. Val loss was evaluated over the entire val set every
400 iterations (3 times per epoch). Here the overfitting is very obvious after two epochs.

4.3 Decoder HMN Links

The Dynamic Pointer Decoder uses two HMNs to propose a predicted start and end for the answer
span at each iteration. In the original paper, the start HMN passes its new prediction immediately to
the end HMN in the same iteration. Our initial implementation, however, experimented with taking
the start and end predictions at each iteration and passing them simultaneously to the HMNs in the
next iteration. This created a disconnect in communication between the start HMN and the end
HMN. We observed that switching back to the original implementation reduced our end loss and we
obtained qualitatively better end predictions.

4.4 Bidirectional LSTMs

Figure 6: Smoothed training loss over hours. Green is our final model for reference. Orange uses a BiLSTM
with size 100 word vectors and performs slightly worse in validation and dev. Yellow uses a BiLSTM with size
300 word vectors and performs very poorly.

We experimented with using bidirectional LSTMs in place of the single-direction LSTMs in the
model. Due to the setup of the DCN architecture, the switch to BiLSTMs introduced hidden dimen-
sion issues. BiLSTMs return twice the output with the same hidden size which must be combined
somehow. Concatenating them vastly increases the parameters in the model, since this doubling is
carried throughout the entire model, which we aimed to avoid. Naive combinations like addition
or averaging risk loss or degradation of information. We therefore tried halving the hidden size of
these BiLSTMs and concatenating.This functioned reasonably while we were still working with size
100 word vectors (since the hidden size was still 100 even after being halved). Qualitatively, this
seemed to reduce our predictions of overly long answers. Many of our incorrect answers have the
start token correct but choose a very late end token, which may be an artifact of the single direction
LSTM reading the paragraph. Furthermore, this was far more common than the inverse problem.
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An example of this phenomenon can be seen with a question from the sanity-check dev subset:
Consider the question “Which player had the most interceptions for the season?” with a context
document about football.

The correct response is given as “Kurt Coleman”, which the BiLSTM identified. The original
LSTM-based implementation, however, responded with “Kurt Coleman, who led the team with a
career high seven interceptions, while also racking up 88 tackles and Pro Bowl cornerback Josh
Norman.” Similar situations were common, where an answer had the correct start but the follow-
ing words were still relevant to the entity of interest and the end token was placed far later than it
should have been, typically upon seeing something that clearly indicated a new entity (in this case a
different subject).

With the BiLSTM there did seem to be a more even balance. However, we did not see a significant
overall performance increase at the time, and the same method performed poorly with size 300 word
vectors, likely due to the significant loss of information when moving from 300 to 100 dimensions.

Due to the size constraints we could not concatenate original size BiLSTM hidden states and the
naive alternatives we explored were suboptimal so we ultimately did not use this feature in our final
model.

4.5 Encoder Question Maxout

Through our experimentation we developed our final models described in section 3. Our result was
two sets of final models corresponding to whether we included our additional encoder maxout layer
or not. To test the effect of this added layer, we ensured each model in one set had a counterpart in the
other with all other details held consistent. We then submitted these models to the dev leaderboard
and observed the dev F1 and EM scores.

We found that adding encoder maxout resulted in a small but consistent improvement to our F1
score, with a smaller change to the exact match score of our model. Typically the improvement was
1-3% for F1 and up to 1% for EM. We note that an examination of the qualitative evidence from our
(limited) dev subset suggested that the encoder maxout models performed better on many examples
that we were previously completely failing (guessing massive spans of the paragraph, for example,
or a span that did not overlap the correct one), while examples that were closer to correct experienced
much less improvement. This is also supported by the relative changes in our F1 compared to our
EM. EM only improved slightly while F1 received a larger boost, possibly from improvement in our
worst performers that would not affect EM.

4.6 Final Models and Leaderboard Results

Model Val Loss Dev (F1) Dev (EM)

100D W-Vec, No Q Maxout, 15% Dropout 3.14 64.54% 51.34%

300D W-Vec, No Q Maxout, 15% Dropout 2.91 67.35% 57.27%

300D W-Vec, No Q Maxout, 25% Dropout 2.89 67.93% 57.66%

300D W-Vec, Q Maxout, 15% Dropout 2.73 69.08% 58.25%

300D W-Vec, Q Maxout, 25% Dropout 2.79 69.18% 57.25%

Based on our validation losses and dev leaderboard results, we chose to submit our size 300 word
vector, 15% dropout model with encoder maxout for our final test submission. The results on the
test set were an F1 of 69.22% and an EM of 58.764%, consistent with both our val and dev results.

Qualitatively, our final model predictions on the dev subset exhibit behavior similar to that noted in
the original paper. We observe that many questions are either reasonable and very close to correct
or completely off. Examples of the former are “Miami’s Sun Life Stadium” instead of the correct
“Sun Life Stadium”, “Coldplay with special guest performers Beyoncé and Bruno Mars” instead of
the correct “Coldplay”, and “Santa Clara, California” instead of the correct “Santa Clara”. Even
when an answer is incorrect it can often be the right type of entity, such as asking for a person and
predicting a different but relevant person.
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However, when an answer is more than slightly incorrect, it is usually extremely incorrect. Examples
of this include situations like predicting the answer:

Sanders was his top receiver with six receptions for 83 yards. Anderson was the game’s
leading rusher with 90 yards and a touchdown, along with four receptions for 10 yards.
Miller had six total tackles (five solo), 2 1

2
sacks, and two forced fumbles. Ware had five

total tackles and two sacks. Ward had seven total tackles, a fumble recovery, and an inter-
ception. McManus made all four of his field goals, making him perfect on all 11 attempts
during the post-season. Newton completed 18 of 41 passes for 265 yards, with one inter-
ception. He was also the team’s leading rusher with 45 yards on six carries. Brown caught
four passes for 80 yards, while Ginn had four receptions for 74. Ealy was the top defen-
sive performer for Carolina with four total tackles, three sacks, a forced fumble, a fumble
recovery, and an interception. Defensive End Charles Johnson

when the correct answer was simply “Sanders.” Even here, the start token at least is correct.

5 Conclusion

Dynamic Coattention Networks are a very complicated but powerful architecture for QA tasks. We
were able to successfully reimplement one and obtain reasonable performance with behavior similar
to the original model. Furthermore, we observed throughout our experimentation that the DCN
architecture framework consists of individual pieces that are modular to the point that they could
be combined with different systems in future experiments. Although we ultimately were unable to
incorporate bidirectional LSTMs, there may be a better way to successfully integrate them without
massively increasing the size of the model. Our BiLSTM experiments with size 100 word vectors
hinted that this may help with asymmetry in start-end prediction performance and address many of
the observed cases of a correct start token with absurd end token predictions. The maxout encoder,
meanwhile, consistently provided a slight boost to performance, and our final model benefited from
its inclusion. Moving forward, the use of multiple different coattention encodings and a way to
take maxout or ensemble feedback to produce the final encoded knowledge representation may be
worth exploring. For the decoder, many key properties come from the iterative interaction between
the HMN and LSTM. The properties of this dynamic pointer decoder when using other existing
decoders as the index proposer in place of the Highway Maxout Network represents a possible topic
for future exploration.
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