
 1

Implementing Multi-Perspective Context
Matching for the SQuAD Task in TensorFlow

Christopher Pesto

Codalab: cpesto
cpesto@stanford.edu

Abstract
The Multi-Perspective Context Matching model introduced by Wang, et al.
[1] in 2016 is known to be capable of producing strong results in the
SQuAD question answering task. As of this writing, it is tied for 3rd place
on the SQuAD leaderboard.1 Implementing the model efficiently is difficult
in practice, and the original introduction paper leaves out some
implementation details. The goal of this paper is to give practical details
regarding my own implementation of this model and its performance, to
accompany a code submission that is known to produce reasonably good
scores.

1 The SQuAD task
This is an introduction to SQuAD. Please see the original paper for more information on the
dataset, task, and evaluation.

1 . 1 D a t a s e t

The SQuAD question answering task was introduced by Rajpurkar, et al. [2] in 2016 to
provide a challenging, large, high quality dataset for evaluating Reading Comprehension
(RC). Those authors found existing datasets to be either too small or unreflective of genuine
human reading comprehension, and intended for SQuAD to be both large and qualitatively
representative of real human understanding.

The dataset consists of 100,000+ questions with one or more ground truth answers per
question. Each ground truth correct answer is a span of text taken verbatim from the
corresponding reading passage the question is associated with.

1 . 2 Ta s k

The task is to take pairs of context reading passages and questions, and return the span of
text from the context that answers the question.

1 . 3 E v a l u a t i o n

Success on the task is evaluated in two ways.

F1: This is the average overlap between predictions and correct answers. The F1 is
calculated for each prediction/correct answer pair for the answers under each question, the
maximum is taken per question, then the average is computed over the per-question max
values.

1 SQuAD homepage with leaderboard: https://rajpurkar.github.io/SQuAD-explorer/

 2

Exact Match (EM): This is the percentage of predictions that match any one of the correct
answers for its question exactly.

2 Introduction of the model

2 . 1 M o d e l l a y e r s

The Multi-Perspective Context Matching Model consists of 6 layers. This is a general
description of each layer - for a more precise description of each (particularly the MPCM
layer), please consult the original paper.

Figure 1: Figure 1 from the paper by Wang, et al.

Let C denote the length of the input sequence of context tokens and Q denote the length of
the input sequence of question tokens.

Word Representation Layer: The context and question inputs are tokenized and the
sequences of tokens are converted into sequences of word embedding vectors, lengths Q and
C.

Filter Layer: For each context time step, the cosine similarity is computed between it and
all Q question time steps. Each context time step vector is scaled by the maximum cosine
similarity between it and all question time steps, producing a new filtered context sequence
of length C.

Context Representation Layer: Pass both the filtered (scaled) context and question through
the same BiLSTM. Output a sequence of hidden states for each, resulting in two new C- and
Q-length sequences.

Multi-Perspective Context Matching (MPCM) Layer: Compare the sequences of hidden
states for the context and question produced in the previous layer, to produce a single new
C-length sequence. This is described in more detail below.

Aggregation Layer: Pass the output of the MPCM layer through a BiLSTM. Output another
C-length sequence of hidden states.

Prediction Layer: Pass the output sequence from the previous layer through two different
feedforward neural networks, to produce two C-length probability distributions for the start

 3

and end positions of the answer span within the context.

2 . 2 M P C M l a y e r d e t a i l

This layer accepts two sequences of hidden states, lengths C and Q, the results of applying a
BiLSTM to the filtered context and question. Using three different matching strategies, each
applied to both the forward and backward results from the BiLSTM, it outputs 6 vectors
which are concatenated together at each time step.

This layer is complex. I found the original description very confusing, and I misunderstood
how it worked at first. I describe it a little differently here than in the original paper,
hopefully in a somewhat simpler way.

For each of the 6 matching strategy vectors mi, the kth element is defined as the cosine
similarity between the kth rows of two vectors v1 and v2 multiplied element-wise down the
rows of the ith matching matrix Wi.

𝑚"
= 𝑐𝑜𝑠𝑖𝑛𝑒(𝑊"

∘ 𝑣/,𝑊"
∘ 𝑣1)

Each matching matrix is lxd, where l is a tunable hyperparameter of the model that the
authors call the “number of perspectives” and d is the number of hidden states in the
BiLSTM providing the layer input.

The vectors v1 and v2 at each output time step depend on the matcher. Let c denote the
context input sequence and q denote the question input sequence. Each matcher is applied to
both the forward and backward inputs. Each is defined for the jth timestep of the context
input, cj.

Full-Matching: This is just the above operation applied to v1 = cj and v2 = qfinal.

Maxpool-Matching: The above operation is applied to v1 = cj and v2 = qh, h Î (1…Q). Each
element mk is the max for row k over the whole question.

Meanpooling-Matching: This is the same as Maxpooling-Matching, but using the mean
instead of the max.

The result is a single C-length sequence, where each element is 6l-dimensional.

3 Dataset analysis
For efficient training and prediction generation, it’s necessary to process data in uniform-
length batches. This means establishing maximum cutoff lengths for contexts and questions,
which determine the largest possible batch size for a given GPU memory (larger batch sizes
give faster execution) as well as execution speed for a given batch size. Cutting off more
context and question data will obviously yield lower accuracy, though. Effectively making
this tradeoff between execution speed and model accuracy requires understanding the data
distribution.

The SQuAD dataset is divided into two disjoint files, train-v1.1.json and dev-v1.1.json. The
preprocessing code we were provided splits train-v1.1.json into a 95% training set and a 5%
validation set. The contents of dev-v1.1.json act as a publicly-available test set. Its contents
are different in that each question can contain multiple correct answers, while those in train-
v1.1.json contain only one correct answer per question.

All three datasets follow a similar long-tail distribution, where the bulk of their lengths is
concentrated at the lower end of their ranges. The statistics and figures below are for my
95% training set.

 4

Figure 2: Histogram of tokenized training set context lengths

Figure 3: Histogram of tokenized training set question lengths

 95th percentile 99th percentile Max

Context length 244 324 766

Question length 18 23 60

Correct answer span, max(start, end) 152 217 605

Table 1: Statistics on tokenized training set

4 My implementation

4 . 1 S i m p l i f i c a t i o n s

I made two simplifications to the MPCM model in my implementation.

No character embeddings: The original paper combines character embeddings (the result of
feeding each character in a word through an LSTM) with the word embeddings. I cut this to get to
a working implementation on time, and was unable to add it in later in the time I had. According
to the MPCM authors’ ablation studies, this only accounts for a 2.5 percentage point F1 loss
relative to their full single model.

0
5000
10000
15000
20000
25000
30000
35000
40000

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

0
5000
10000
15000
20000
25000
30000
35000
40000

0 5 10 15 20 25 30 35 40 45 50 55 60

 5

Less dropout: The original paper claims dropout is used in all layers from Figure 1. In my
implementation I only apply dropout in the Context Representation Layer (outputs), MPCM layer
(outputs), Aggregation Layer (outputs), and Prediction Layer (middle layer of two-layer neural
networks). I omitted dropout on the Word Representation Layer and Filter Layers because I
wanted all token embedding information to always reach the network.

4 . 2 M i s s i n g d e t a i l s

There are several details on which the original paper is ambiguous that need to be filled in, or
which are missing but seem necessary.

Feedforward neural network: The paper describes the prediction layer as just two feedforward
neural networks. I chose to implement a two-layer network, defined as

ℎ = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑅𝑒𝐿𝑈 𝑥𝑊/ + 𝑏/)
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ℎB𝑊1 + 𝑏1	

W2 is actually a weight vector, rather than a weight matrix, because this layer must reduce the
rank of the input tensor to produce the probabilities, a detail not described in the original paper.

End point greater than or equal to start point: The original paper states that they enforce that
the end point is greater than or equal to the start point. Since the two prediction networks are
independent at the last layer, they can produce the endpoints in either order. I enforce this
constraint by choosing a start point with argmax over the start probabilities, then setting the end
probabilities before that point to –inf before selecting an end point. I experimenting with altering
an existing model to apply this symmetrically, reselecting the start or end point first depending on
which had a higher probability when end < start, but the gain from doing that was negligible.

Sequence masking: The final step of my decoder is to set the probabilities of indices beyond the
original context lengths within each batch to –inf. The original paper doesn’t mention this, but it is
necessary to get an accurate softmax cross entropy loss that does not include probability
predictions on padding tokens.

5 Implementation pitfal ls
Vectorization: This model defines operations (outside of the RNNs) that operate over the length
of the context and question. Effectively vectorizing these is extremely difficult – in the MPCM
layer, this means operating on pairs of rank 4 tensors. It is necessary though, as implementing
these with even just a loop over context length makes TensorFlow unusably inefficient.

Embedding quality: This model is extremely sensitive to the quality of the word embeddings
used. Moving from the 100-dimensional 6B token uncased GloVe embeddings to the 300-
dimensional 840B token cased GloVe embeddings was essential for getting good results.

6 Results

6 . 1 D e v s e t t o k e n s

We were provided with code that produced a trimmed vocabulary and corresponding set of
embeddings. That is, it applied tokenization to the train and validation sets and created a
vocabulary from the full set of resulting tokens, the PAD padding token, the UNK out of
vocabulary token, and one other special token. It created an embedding array equal in length to
this vocabulary, initialized randomly. For each token/vector pair in the full embedding, it then
copied in the true embedding if the token was present in this vocabulary. (It originally matched
against multiple case variants in the vocabulary, but I added an option to use only case sensitive
matching in order to use the 840B GloVe embeddings, which are cased.)

 6

I retained this trimming strategy, but in addition to the training and validation set tokens, I
included the tokens from the tokenized dev set as well. My results below are based on models
trained with this vocabulary and trimmed embedding.

I justified this decision under the assumption that this was equivalent to training and predicting
with the full embedding set, which I only didn’t do out of memory concerns. No matter what,
there aren’t embeddings available to the model that aren’t in the full set, so adding those that were
necessary for the dev set seemed more reflective of what the model is actually capable of.

As outlined below, though, this assumption was possibly flawed.

6 . 2 S u b m i t t e d re s u l t s

For all my training, I followed the original paper recommendations of l = 50 and 100-dimensional
LSTM hidden states.

For my submitted results, I used dropout of 0.2 (also recommended in the paper), and cut off
context lengths at 375 (99th percentile of dev context lengths) and question lengths at 34 (max of
dev question lengths). This yielded the following.

 F1 EM

Dev set 67.189 55.951

Test set leaderboard 58.496 46.176

Table 2: Results on dev set and test set leaderboard for model

6 . 3 D e v / t e s t s e t d i s c re p a n c y

There is a significant gap (8.693 F1, 9.775 EM) for this trained model.

It seems that the missing token embeddings that are trimmed from the full embedding set have a
significant effect.

Additionally, I suspect that not including character embeddings hurts the model’s ability to
perform well on the test set as well, possibly more than the original paper’s ablation studies would
suggest. Even if all the missing OOV tokens from the test set are mapped to the opaque UNK
vector in the word embeddings, character embeddings would give the model visibility into the
token strings themselves, letting it effectively match them between question and context.

6 . 4 S e n s i t i v i t y t o c u t o f f l e n g t h

Within the long tail, the model is actually not extremely sensitive to changes in cutoff length. In
comparison to the above, the results for another model trained with a context cutoff of 248 (95th
percentile of dev context lengths) and question cutoff of 23 (99th percentile of dev question
lengths) are not substantially different.

 F1 EM

Qmax 34, Cmax 375 67.189 55.951

Qmax 23, Cmax 248 66.862 55.430

Table 3: Results on dev set for two different cutoff lengths

 7

At these shorter cutoffs, the model could be trained on an Azure NV6 instance with an 8GB GPU
with a batch size of 50, yielding about 45 minutes per epoch. The larger cutoffs require over an
hour per epoch.

6 . 5 S e n s i t i v i t y t o d ro p o u t

I tried testing how the model trained with different dropout values, which the paper did not cover.

The “Train” results in this figure are from a random sample of 2000 rows from the training set at
the end of the 4th epoch.

Figure 4: F1 and EM on train and dev sets after 4 epochs of training

Clearly the model overfits quickly with 0 dropout.

6 . 6 E r ro r s

In general, as can be seen in the dev-predictions.json file for the Qmax 34, Cmax 375 model
included with the code submission, the model seems to perform well. Its errors make sense. For
example:

Which NFL team represented the AFC at Super Bowl 50?
Prediction: Denver, Correct: Denver Broncos

What color was used to emphasize the 50th anniversary of the Super Bowl?

Prediction: golden, Correct: gold

The model struggles with these very similar answer forms. In the second case, given the context
paragraph it was effectively impossible to know the actual correct answer was gold without
knowing that is the name of the color.

6 . 7 U s e o f f u l l e m b e d d i n g s e t

After noting the large discrepancy between the dev set and test leaderboard scores, I modified the
vocabulary generation code to be able to produce an untrimmed vocabulary. In this case, I print
exactly all the tokens in the GloVe 840B embeddings in order as the vocabulary, rather than
developing it from any of the datasets.

This increases the vocabulary length from 123,292 tokens to 2,196,020, and produces an
enormous embeddings file of 2.9GB in NumPy’s npz format. TensorFlow unfortunately will not
even load a tensor over 2GB normally. I was able to load it using a workaround technique I found
in a GitHub thread with a Google Brain engineer, although unfortunately (in my implementation at

45
50
55
60
65
70
75
80

0 0.2 0.4

Train	F1 Train	EM Dev	F1 Dev	EM

 8

least) this requires my code to know the length of the embeddings file, which I pass in as a new
command-line argument (this is in the version of the code I submitted). To my surprise, though,
the model trained quickly on the Azure GPU – I was able to train with Qmax 23, Cmax 248 and a
batch size of 30, in not much more than an hour per epoch (up from ~45 minutes per epoch
with the trimmed vocabulary for the same cutoffs).

Unfortunately, the results after 6 epochs of training were not what I expected. (The train and
validation results are according to a final random sample of 2000 rows from each set at the
end of the 6th epoch.)

 F1 EM

Training set 63.567 43.667

Validation set 50.643 33.000

Dev set 18.205 6.566

Table 4: Results using the entire GloVe 840B embeddings as vocabulary

The aberrant dev set results seem like they could be a bug or other error on my part, as there
should be no significant difference between the validation and dev sets.

That said, these results illustrate that there is potentially a meaningful difference between
including the dev set tokens in the trimmed vocabulary and simply using the entire
embedding set as the vocabulary.

In the first case, when a token from the sets included in the trim operation does not appear in
the full embeddings, it still receives a unique token id and vector (even though that vector is
just randomly-generated). This means that at prediction time, all the tokens received are at
least distinguishable.

In the second case, any token that does not appear in the full embeddings will just be
collapsed into the single UNK token id/embedding at training and prediction time, making
them indistinguishable from one another.

Again, character embeddings would probably address some of this difficulty, as the model
would be able to use them to still distinguish between tokens in this case. Additionally, if
this is really the main issue, it would probably be possible to use a trick such as introducing
multiple UNK tokens to alleviate it somewhat.

7 Future exploration
If using the full embedding set is necessary for achieving generalizable high-quality results,
the model is unpractical for use outside of a high-powered GPU-based server. It would be
interesting to produce an effective model able to run on less powerful hardware.

A c k n o w l e d g m e n t s

Special thanks to both instructors and all the teaching assistants for leading a very
challenging but also extremely rewarding and fun course.

R e f e re n c e s
[1] Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. 2016. Multi-Perspective Context
Matching for Machine Comprehension. arXiv preprint arXiv:1612.04211.

[2] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+
Questions for Machine Comprehension of Text. arXiv preprint arXiv:1606.05250.

