Ensemble Learning For Machine Comprehension:
Bidirectional Attention Flow Models

William Du, willadu@stanford.edu
Stephen Ou, sdou@stanford.edu
Divya Saini, sainid@stanford.edu

March 22, 2017

Abstract

In this paper, we will explore machine comprehension in Stanford
Question and Answering Dataset using ensembled deep recurrent neural
networks with bi-directional attention flow. Given a context paragraph,
we attempt to answer a query related to the context paragraph. This
requires use to not only generate knowledge representation for each ques-
tion and paragraph, but also create mechanisms that explore attention be-
tween the questions and paragraphs. In this paper, we use bi-directional
attention flow networks that use bi-directional long short-term memory
recurrent neural networks to help represent the context, the questions
and their interactions at multiple levels of granularity. Our best ensem-
ble model achieves 63.748 F1 and 52.507 EM scores on the development
set and 64.41 F1 and 53.498 EM scores on the test set, all published on
CodaLab.

1 Introduction

Machine Comprehension is a studied task in both natural language process-
ing and artificial intelligence research. Intuitively, strong reading comprehen-
sion involves both the interpretation of a text and the interpretation of a related
question in a way that enables a machine to make complex inferences regarding
a relevant answer.

In this task, we set out to build an end-to-end neural network that has the
ability to, fairly accurately and precisely, conquer the question-answering task
on the Stanford Question and Answering Dataset (SQuAD). We define the act
of answering a question as the process of predicting an answer span within the
given context paragraph for the relevantly provided question.

Overall, our goal for the project was to: predict a span of words within the
context paragraph that represents an answer to the provided question. Our
span is indicated by a prediction of a start word and an end word that delineate
the spanned answer, a subset of the full context paragraph.

1.1 Dataset

SQuAD is comprised of around 100K question-answer pairs, along with a
context paragraph. The context paragraphs were extracted from a set of arti-
cles from Wikipedia. Humans generated questions using that paragraph as a
context, and selected a span from the same paragraph as the target answer. In
our model we train using 8132 samples and validate using 4284 samples. We
preprocess questions to trim and pad them to lengths of 30, and do the same
with contexts to length 300. Lengths of 30 and 300 were chosen based on the
distribution of question and context lengths (Figure 1).

Distribution of Question Length Distribution of Context Length

10000

7500

7500

5000
5000

2500

Number of Occurences of Questions

2500

Number of Occurences of Context Length

0 10 20 30 0 100 200 300 400
Number of Words in a Question Number of Words in a Context

Figure 1: Distribution of question and context lengths on the train dataset.
This distribution is used to inform the question cutoff length of 30, and the
context cutoff length of 300.

2 Background and Related Work

The initial baseline model, a simplified version of the Match LSTM model
described by Wang and Jiang in ” Machine Comprehension Using Match-LSTM
And Answer Pointer” was used to get acquainted with the dataset and the prob-
lem. The simplified description of the model is as follows: a Bi-LSTM was run
over the question, and the two end hidden vectors were concatenated to create a
representation of the question. This was also done over the context paragraph,
conditioned on this question representation. For the attention step, we calculate
a vector over the context paragraph representation based on the question rep-
resentation and conglomerate it with each context paragraph position to derive
a new vector for each position.

As the baseline of our more advanced model, we started with an implemen-
tation of the BiDAF methodology described by Seo et al. in ”Bi-Directional
Attention Flow For Machine Comprehension”!. We implemented the word em-

bedding layer, context embedding layer, and attention flow as described. We did
not, however, choose to implement the character-level embedding of the design.

Instead of character-level embeddings, we focused efforts on exploring in
a scope beyond the BiDAF model. These explorations are further described
below, but it is important to note that the filtering exploration was partially
inspired by Wang et al. and their model described in " Multi-Perspective Context
Matching for Machine Comprehension”?. The high-level intuition behind the
filtering layer we were inspired by the group to implement, is that, often, only
a small piece of the passage is needed to answer the question and it could make
sense to define an additional layer to filter out redundant information from the
passage.

3 Approach

Our question-answering model is called the bidirectional attention flow model.
The five layers are word embedding layer, encoding layer, attention flow layer,
modeling layer, and decoding layer.

End Output
=
End Encoding = &3
.CE
Start Output
=
=
Modeling

Bi-LSTM

Attention Flow

Context

=
Embeddings ﬁ
P2 P3 P300
Word
Embeddings ' -~ -~ - ' |

[1
Context Embeddings Question Embeddings

Figure 2: Graph of the machine comprehension model

Before we describe each layer, let’s establish notations. Let p be the number
of words in a paragraph. Let ¢ be the number of words in a question. Let h be
the number of hidden states. Let d be the dimension of the word embeddings.

3.1 Word Embedding Layer

The goal of this word embedding layer is to obtain high-dimensional vector
representation of the meaning of the words in the questions and the paragraphs.
For example, two words with similar meanings, such as dog and puppy, will have
similar vector mapping.

In order to get accurate vector representation of words, we use GLoVe?,
which is an industry standard of pretrained word embeddings. In particular,
these pretrained word embeddings are available in many dimensions - 50, 100,
200, and 300. We end up using d = 300 dimensions for the pretrained word
embeddings.

As a result, we obtain two matrices, Q € R?X9 representing the question
embeddings, and P € R?*? representing the paragraph embeddings.

3.2 Encoding Layer

We apply a bidirectional Long Short-Term Memory Network (LSTM) for the
question embeddings. At each time step ¢, we feed in the the word embedding
for question position ¢. Similarly, we apply the same LSTM on the paragraph
embeddings. It’s important to note that we share the weights between the ques-
tion bidirectional LSTM and the paragraph bidirectional LSTM. In addition,
we feed in the last hidden state of the question bidirectional LSTM as the initial
hidden state of the paragraph bidirectional LSTM.

The goal of this encoding layer is to capture the relationship between each
word and its surrounding words, for both the question and paragraph. The
LSTM we choose is bidirectional because we want to reflect the interaction of
neighboring words that come both before and after the current word.

As a result, we obtain two matrices, Q' € R?"*9 representing the question
meaning, and P’ € R?"*P representing the paragraph meaning.

3.3 Attention Flow Layer

The purpose of the attention flow layer is to obtain two attention matrices,
query-context attention and context-query attention. In query-context atten-
tion, we want to capture which question word are the most relevant to each
paragraph word. In context-query attention, we want to capture which para-
graph word are the most relevant to each question word. Both of these attention
matrices are crucial at figuring out which paragraph word and which question
word should the model pay higher attention to.

The input of the attention flow layer is Q' and P’, and the output of the
attention flow layer is G € R8"*P,

Attention Matrix Representation Between Context and Question Words

? 135
open 12.0
Arts 10.5
the 9.0
of 7.5
Museum 6.0
Bronx 45
the
b 30
When ’

The
it
um
art

through

Bro

=
et

Figure 3: Attention matrix representation for a sample question, answer pair.
The heatmap below depicts the attention matrix for each question word, as a
representation of the words emphasized in the paragraph for each word in the
question. Each row is a question word and each column in a paragraph word.

3.4 Modeling Layer

In the modeling layer, we take our representation of the paragraph words
that incorporated attention and output the interaction among the paragraph
words for all the questions. Implementation wise, we use a two-layer stacked
bidirectional LSTM. The input for the modeling layer is the output from the
attention layer A. And the output of the modeling layer is M € R24*?,

3.5 Decoding Layer

In the decoding layer, we apply the linear function ij; [A; M| with a train-
able weight W, and then apply the softmax function to it in order to get a
probability distribution of each paragraph position being the start index.

Before we decode for the end index, we apply another layer of bidirectional
LSTM for M to obtain M’. This helps condition the end based on the start
predictions. Now, just like before, we apply the linear function qu; [A; M'] with
a trainable weight W, and then apply the softmax function to it in order to
get a probability distribution of each paragraph position being the end index.

3.6 Training with Parameter Searching

For training, we use cross entropy as our loss function. In particular, we get
the predicted probability for the start and end index, and take the cross entropy
loss with the one-hot vector where the correct index has a probability of 1 and
the incorrect indices have a probability of 0.

The optimizer we use is stochastic gradient descent. The learning rate we use
is 0.5. The initializer we use is Xavier initialization with normal distribution.
The question size is capped at 60. The paragraph size is capped at 60. The
answer size is capped at 30. We did not include dropout in the model because
the performance was worse when we incorporated dropout.

3.7 Testing with Answer Extraction

Once we obtain the probability of each word in the paragraph being the
predicted start and end index, we will extract the actual answer. We perform
a search of all pairs of start index a, and end index a, such that as; < a. and
ae — as < a, where « is a threshold for maximum answer size, and we pick the
pair (as, a.) with the highest probability product as - ae.

3.8 Ensemble Learning

Output Prediction

-.-

Figure 4: Graph of ensemble combination of single models

Input Data

Additionally, we use ensemble learning on top of our bidirectional attention
flow model. During training, we optimize each of our bidirectional attention
flow model with different randomized initialization. During testing, we feed the
input into all our trained models. Besides outputting the predicted start and
end index, our model also returns a confidence score that is the product of the
probability of the start index and the probability of the end index. Then, we
will return the answer with the highest confidence score as the overall answer.

4 Experiments

In our process, we balanced both exploration and refinement of our top
models. First, we will explain the different models that were explored that were
not included in the final model. These explorations are both in intrinsic model
structure but also hyperparameter space searching (Figure 1).

As previously discussed, before implementing coattention, we created the
baseline model, simplified from the Match-LSTM paper. Then after imple-
menting the bi-directional attention flow model, we explored the use of both
stochastic gradient descent (SGD) and ADAM as optimizers, ultimately with
SGD outperforming ADAM. We propose that SGD outperformed ADAM be-
cause it allowed the model to escape quickly from local minima and allowed it
to converge on the global minima. Then, we implemented filtering from ” Multi-
Perspective Context Matching for Machine Comprehension,”? as a prepossessing
step before feeding the word embeddings into our first contextual embedding
bi-LSTM. We believed this would improve model performance by increasing the
weight of highly relevant words. After filtering proved to be less successful than
the baseline bidirectional attention flow model, we explored the hyperparameter
space searching for optimal learning rates and dropout rates.

Table 1: Exploration Models: Models trained and tested on validation dataset.

MODEL LEARN RATE OPTIMIZER F1 EM
Attention Baseline 0.01 ADAM 12.03 7.42
BiDAF 0.001 ADAM 21.51 11.16
BiDAF Filtering 0.5 SGD 47.80 32.20
BiDAF Dropout 0.5 SGD 53.88 37.59
BiDAF 2.0 SGD 52.07 36.40

Next we will discuss the results from our model with the 6B GLoVe* vec-
tors. Below in table 2 are the F1 and EM scores on the validation set for the 3
single models at their best 2 epochs. These 6 models were then used to build
an ensemble model that was our first submission to codalab. These single mod-
els were the bi-directional attention flow model described above, trained with
stochastic gradient descent, with no dropout, and with a learning rate of 0.5
and vocabulary of word embeddings from the 6B Wikipedia GLoVe dataset*
trimmed to the vocabulary of our train and validation set. For this model, the
dev set performance for the ensemble model was 62.37, F1, and 50.67, EM. The
test set performance for the ensemble model was 63.17, F1, and 52.73,
EM. These results were published on codalab under the username stephenou.

Table 2: F1 and EM scores for best Bi-DAF model with 6B GLoVe?*.

MODEL DATASET EPOCH F1 EM
BiDAF 1 VAL 11 60.5 43.6
BiDAF 1 VAL 12 60.2 44.7
BiDAF 2 VAL 13 58.9 43.5
BiDAF 2 VAL 14 59.3 44.4
BiDAF 3 VAL 13 58.7 42.8
BiDAF 3 VAL 14 58 42.7
BiDAF Ensemble DEV - 62.3 50.6
BiDAF Ensemble TEST - 63.17 52.73

Finally, to squeeze the most performance out of our model, we ran the same
process and model using the 840B Common Crawl GLoVe vectors* trimmed
to the vocabulary of our validation and train sets. This increases the number
of word embeddings available, and decreases the number of out of vocabulary
words. Below in table 3 are the F1 and EM scores on the validation set for
the 2 single models at their best 2 epochs. These 4 models were then used
to build an ensemble model that was our second and final submission to co-
dalab. These single models were the bi-directional attention flow model de-
scribed above, trained with stochastic gradient descent, with no dropout, and
with a learning rate of 0.5 and vocabulary of word embeddings from the 840B
Common Crawl GLoVe* dataset trimmed to the vocabulary of our train and
validation set. For this model, the dev set performance for the ensemble model
was 63.748 F1, and 52.507 EM. The test set performance for the ensemble
model was 64.41, F1, and 53.498, EM. These results were published on
codalab under the username stephenou.

Table 3: F1 and EM scores for best Bi-DAF model with 840B GLoVe?.

MODEL DATASET EPOCH F1 EM
BiDAF 1 VAL 15 60.08 45.30
BiDAF 1 VAL 16 60.02 44.03
BiDAF 2 VAL 15 61.51 46.15
BiDAF 2 VAL 16 60.82 46.05
BiDAF Ensemble DEV - 63.748 52.507
BiDAF Ensemble TEST - 64.41 53.498

5 Analysis

Overall we see we achieved reasonably good performance on using our best
BiDAF model with the 840B GLoVe vectors. Next we will perform some analy-
ses to understand how our model performed for different types of questions and
for different lengths of predictions.

As depicted by Figure 5, our model had a much easier time correctly pre-
dicting answers to questions that lend themselves to more quantitative answers.
This includes questions in the format of "what date” and ”what percentage”,
which performed at 97.8 and 95.6 F1 scores, respectively, in our validation set.
Questions that lend themselves to more qualitative explanation-based answers,
such as "what happens”, ”what was”, and ”what may”, tended to have lower
F1 and EM scores.

" F1 Score
. EM Score

Figure 5: Average performance for different question types. In the develop-
ment set, what questions that request specific quantitative data as answers, i.e.
numbers perform the best, with the highest relative F1 and EM scores.

o

what are

what area

what caused
what century
what company
what date

what do

what else

what entity

what event

what famous
™ what happens
what is

what may

what network
what organization
what percentage
what river

what sort

what term

what time
what two
what types
what was
what will
what would

1y
o
@

As depicted by Figure 6A, our model has the highest proportion of exact
matches on questions that lend themselves to shorter answer lengths. As the
answer lengths become longer, our model becomes less effective at perfectly
predicting the answer span. Of all the answer lengths in our validation set,
the ones at length one or two see the highest ’exactly matched’ proportion,
of around .48, while the longest answer lengths around 33 words see ’exactly
matched’ proportions close to 0.

The question becomes, is there some component in our model that helps
increase accuracies on these certain types of questions and decrease on others?
The reason our shorter answers were more often perfectly predicted is likely
grounded in an understanding of our attention layer’s influence. Because we
take time to calculate the relevance of each context word to the question words,
it is likely that most of the positive relevance is placed on one or a few words for

shorter answers versus across many more words for longer answer spans. This is
because for longer answers there are naturally going to be more keywords with
potential relevance to question words. Thus, with a greater spread of relevance
on context words, it becomes more difficult for the model to as accurately predict
the start and end tokens whereas when the relevance is mostly placed on one
or a few words, as in shorter answers, there is a greater chance of being able
to accurately predict the start and end tokens based on the more concentrated
relevance.

The reason quantitative answers were more accurately predicted is likely
because quantitative answers are, by nature, shorter than qualitative answers.
By the above reasoning, this would increase our model’s ability to correctly
predict them. The question becomes how we can modify our model to overcome
the deficiency in those more convoluted, longer, qualitative answer predictions.
We describe thoughts briefly in the next section.

0.5 1250 Start
] - End
S 04 $ 1000 -
= =
803 g 750
S 0 5 500
S £
S 01 = 20
0 10 20 30 200 -100 0 100 200
Answer Length Distance Between Real and Predicted

Figure 6: (A) On the left, we have the proportion of perfect answers matches for
each length of answer. A perfect answer is defined as the correct start and end
tokens identified by the model. (B) On the right, this is the distribution showing
the occurrences of distances between the correct index and the predicted index
for all the incorrect predictions.

Finally in figure 6B, we note that even when we do not predict a perfect
match in start or end indices, the model tends to predict indices that are rel-
atively close to the real value. This indicates perhaps with additional data,
hyper-parameter tuning, or additions to the model, we could further improve
our EM and F1 scores.

6 Conclusion and Future Directions

In the future, we want to incorporate syntactic structure of the question
and the paragraph into our model. One possibility is using dependency pars-

10

ing to generate range of answers that makes sense grammatically. We could
also incorporate character embedding, suggested by the original BiDAF paper.
Finally, since the model performs better on quantitative questions than quali-
tative questions and shorter answers rather than longer answers, we could also
try changing the output of the model. Rather than generating the probabil-
ity of start and end indices, we could generate probabilities for each individual
word in regards to whether they are in the answer. Using these probabilities
we could extract the longest positively classified contiguous sequence with some
stop word exceptions to generate our answers. We believe this would allow the
machine comprehension model to better answer more complex answers.

With an F1 score of 64.41 and an EM score of 53.498, we were able to achieve
reasonable performance using our bidirectional attention flow model. The per-
formance is only 20% to 25% lower than current state of the art models and
within a few percentage points of early models for SQuAD, in particular, the
Match-LSTM model. Through our research, we have no only created a reason-
ably good model and explored potential extensions to the existing bi-directional
attention flow model, we have also outlined weaknesses with possibility of im-
provements that we believe will help improve the model to be better comparable
in performance with the current state of the art models.

7 References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hananneh Hajishirzi, Bi-
Directional Attention Flow for Machine Comprehension.

[2] Minjoon Seo, Bi-directional Attention Flow for Machine Comprehension,
http://github.com/allenai/bi-att-flow.

[3] Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. Multi- Perspective Con-
text Matching for Machine Comprehension.

[4] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GLoVe: Global
vectors for word representation.

[6] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text.

11

	Introduction
	Dataset

	Background and Related Work
	Approach
	Word Embedding Layer
	Encoding Layer
	Attention Flow Layer
	Modeling Layer
	Decoding Layer
	Training with Parameter Searching
	Testing with Answer Extraction
	Ensemble Learning

	Experiments
	Analysis
	Conclusion and Future Directions
	References

