Summarizing Git Commits and GitHub Pull Requests
Using Sequence to Sequence Neural Attention Models

Ali Zaidi

Abstract

Every day millions of developers and programmers push commits to GitHub to
ensure their projects are version controlled, reproducible, and remotely accessi-
ble. There are nearly 20 million public repositories (collections of source code in
the form of projects) on GitHub today, and over 16 million unique users. Users are
able to commit additions or changes to their own repositories, as well as the repos-
itories of others. Being able to summarize the key changes a new edit will have
on an existing repository can therefore be highly useful to ease and accelerate col-
laboration. In this work, we use sequence to sequence neural attention models to
learn and subsequently generate commit and pull request messages from the actual
diffs (changes) in the many git commits made by users. The primary task of this
project is code summarization, with the added difficulty that the input sequence is
programming language in the form of source code, and the output sequence is nat-
ural language (NL). Our model is shown to provide useful messages for a family
of programming languages, and provides a useful automatic messaging and sum-
marization service that could be embedded or added to existing version control
systems.

1 Introduction

GitHub has become the de facto home for many open-source and collaborative software development
projects. As of March 2017, there are over 16 million users working and collaborating on nearly
20 million public repositories on GitHub. This torrential amount of activity on GitHub means there
is a huge potential for natural language models to better enable productivity and communication
amongst users. In this work, we analyze a large collection of GitHub commit and pull request
messages in tandem with the actual source code differentials (diffs) to create a code summarization
model amongst the lines of abstract summarization in natural language articles or documents. We
take inspiration from [1] and state-of-the-art neural translation models using sequence to sequence
neural attention algorithms to encode source code differentials into summarized natural language
representations.

GitHub is built on git, a distributed version control system where each member of a project has
their own local copy of the entire repository (and it’s history). After making edits to a fork of the
repository, developers can merge changes back with a remote master repository on GitHub by push-
ing their commits (changes) back to their forked copy of the repository on GitHub with messages for
each commit, and subsequently issuing a pull request to merge those changes into the master repos-
itory (note, if the user is the owner of the remote repository, she may directly push her commits
back to the master remote repository). Pull requests and commit messages provide a transparent
mechanism for everyone associated with a project to review the committed changes, observe any
conflicts with other pieces of the software, comment, and decide whether or not to merge. For large
repositories, involving many edits throughout the software, useful messages when issuing commits
and pull requests are crucial to ensure everyone on the project is aware of the changes associated
with a commit and can make an informed decision about whether to merge or ask for additional
modifications.

CS 224N: Natural Language Processing with Deep Learning (Final Project 2017), Stanford University.

1.1 Background and Related Work

There has been a flurry of activity around translation models using sequence to sequence learners.
The primary objective in neural machine translation is to use a neural network to estimate a distribu-
tion over sequences in the target language conditioned on a given sequence in the source language
(see the cartoon figure 2 for an example of this architecture). Such systems are typically designed
in reference to an encoder-decoder architecture ([7]), where the source network, or the encoder,
encodes the source sequence into a representation that is fed to a decoder network to generate the
appropriate target sequence. Such architectures, especially those that include attention mechanisms
in the decoder network as in [1], thereby allowing it to decide which portions of the source sentence
to pay attention to, have shown to have state of the art success as translation models. Recently, these
architectures have also been used in the generation of abstractive summaries, [60], allowing the model
to generate condensed representations of the source document, as well as for program synthesis and
code summarization in [4] and [5]. We focus on the latter task in this project.

2 Methodology

2.1 GitHub Data and REST API

The data that was used for this project is from the ghtorrent project [3], which is publicly available
under a Creative Commons license. The ghtorrent project provides a mirror of the REST API
provided by GitHub for tracking public data about GitHub repositories and users. In this project
we utilize the data provided through the monthly MySQL database dumps on the downloads page
of the website. This dump contains 21 tables, each corresponding to a separate view of the data
available through GitHub’s API. A schematic view of the relations between these tables is available
on their website. While the commits, projects, and pull requests tables provide information on which
repository and branch that commit was submitted to, as well as the user that submitted that commit,
they do not actually include the source differential between the commit and the previous head branch
(state prior to commit). However, we are able to use find the URL associated with the actual commit
using these tables, which we can subsequently query against the GitHub REST API to pull in the
actual source code in the commit diff (the API returns a JSON structure we can parse to locate the
relevant “files”.

2.2 Exploratory Data Analysis

The data is too large to process in-memory on a single machine (250 GBs for the tables, and an
additional 90 GBs returned from the API of diffs), so we put the tables in Azure Storage account
and used an Azure HDInsight Spark cluster to merge and clean the data using Spark SQL [&]. The
merged dataset consists of 130 MM pull requests and their commits.

In order to obtain the most relevant pieces of the code differential data, we parsed each commit and
only extract the source code diff (changes). We appended the term for deletions and <ADD>
for additions.

The majority (at least 60%) of GitHub projects are in a dormant state. We filtered to those reposito-
ries that had at least one committer and a separate reviewer in the last six months, as well as commit
and PR messages with at least 20 characters. We also filtered to programming languages that share
a similar “functional” syntax: Python, Ruby, Java, Javascript, R, Scala and C#. The most popular
languages (see Figure 1) on GitHub include HTML and other markup languages, which have suf-
ficiently different coding syntax than the functional languages above and would require a different
tokenization, and so were deliberately excluded from this analysis.

One of the key elements for the success of our translation model is a useful embedding of source
code and it’s related commit message / pull request thread. If there is little information between
these two sources, our encoder will not be able to summarize the code diffs into something that can
be unwrapped into meaningful statements by the decoder. In order to bootstrap our algorithm, we
tokenize the source code into tokens containing function names, operators, and strip out comments
and whitespace. Furthermore, we replace all infrequent terms with <unk>.

The most challenging aspect of our code diffs are their length. Some of our code lengths are greater
than 1000 tokens, which would be very hard to summarize even in NNLMs with significant memory

http://ghtorrent.org/files/schema.pdf

Figure 1:
Most Popular Languages by Count of Repositories

Including Forks

JavaScript

Java

Python

Ruby
PHP
HTML
Css

Objective-C
Shell

Go

R

Swift

VimL

Scala
CoffeeScript
Perl

Lua

*““wuw

f==}

2,000,000 4,000,000 6,000,000

capacity. Instead, we break up our tokens by sub-modules (i.e., loops, classes or functions), and
re-use the same message across modules, or by a maximum of 100 tokens.

2.3 Sequence to Sequence Attention Models

We use a generative attention-based neural network to model the conditional distribution of a natural
language summary conditioned on a code diff. Let Ucx denote the set of all code diffs and Uy

denote our set of all natural language summaries. For a training corpus with J code diffs and natural
language summary pairs (c;, nj)'j:1 ,¢; € U,y € Uy, our task is generate a natural language
sentence that maximizes some scoring function s € (Uc x Uy — R):

n* = argmax, s (¢,n) . (1)

Formally, we represent a natural language summary as a sequence of one-hot vectors 11,...,71y €
{0, 1}‘N‘, where N is the summaries’ vocabulary. Our model computes the probability of n from
(1) as a product of the conditional next-word probabilities:

¢
s(e,n) = Hp(ni\m, Ce o),
i=1
with
with p (n;|n,...,n;1) < Wtanh (Wih,; + Wat;), 2)
and where W ¢ RINIXH and W, W, € R¥*H with H denoting the dimensionality of the
summaries embedding matrix. ¢; serves as the contribution from the attention model on the source

code, h; representing the hidden state of the LSTM cell at the current time step, which is computed
based on the previous LSTM cell state m;_; and the previous LSTM hidden state h;_; as

m;h, = f (N1 E,m;_q1,h;_1;0),

Remove old modules <DONE>

 Import argparse os getewd

Figure 2: Representation of Encoder-Decoder Model

and finally, where E € RIVI*H is a word embedding matrix for the summaries, and f is computed
using LSTM cell specifications and parameters §. Hence, we are parameterizing the conditional
distribution of our language model as a seq2seq neural network that uses LSTM as it’s attention
mechanism.

The generation of each word is guided by a global attention model, which computes a weighted sum
of the embeddings of the code differences tokens based on the current LSTM state. For a code diff

¢, we represent it as a sequence of one-hot vectorsey, . .. ¢ € {0, 1}‘6‘ for each source code token,
where C'is the vocabulary of all tokens in our source code diffs. Our attention model computes

k
ti: E Ozi,j'CjF,
j=1

where F' € RICI*H is a token embedding matrix and each activation oy 5 is computed by softmax
of the LSTM hidden state h; and the corresponding token embedding of the code diff ¢;:

exp (h;—ch)
Z?Zl exp (h;rch> .

Qij =

3 Training

3.1 Initialization and Decoding

We train our NNLM (2) using Adam stochastic gradient descent with mini batch sizes set to 25, and
regularization specified through dropout (see Chapters 7 and 8 in [2]). We did not get a chance to
try add additional LSTM layers or use GRU layers instead of LSTMs in this project, but hope to do
so in future iterations.

Upon training our models and providing a code diff ¢, the optimal summary involves searching
through the n-space in the score function’s support. We approximate this value of n* by performing
beam search on the space of all possible summaries using the model output.

3.2 Model Evaluation

Our models take 8 hours to train 100 epochs on Azure NC VMs with Tesla K80 GPUs. The learning
rate in Figure 3 does seem to show that our network parameters have found a local minima. In
Figure 4 we visualize the relative magnitudes of the attention weights «; ; for an example R code
diff while generating it’s summary. The darker regions indicate higher weights. The Figure shows
that our network is able to align key summary words to informative tokens from the code diff, even
those that span multiple tokens (such as rowSums aligning to axis, row and sums)!

The lack of standard benchmarks for our model makes it a bit difficult to assess model performance
in comparison to other models. Nonetheless, we are able to create a simple performance by looking

110

Validation Perplexity

=2}
=}

70

25 50 75 100
Number of Epochs

Figure 3: Learning Rate and Perplexity

Heatmap of Attention Weights

axis

along
sums

for

fun CtiDn -

add

<add= annot <= function token apply 1 rowsSums

Figure 4: Heat map of Attention Activations

at the bag of words feature vectors of all the natural language descriptions from our model and
compare them to the test comments and pull request threads using cosine-similarity. This allows
us to calculate BLEU scores to get average n-gram precision. It should be noted, however, that
our numbers will be biased downwards due to the fact that we split long code diffs into smaller
tokenizations. Our results are summarized in Table 1, with the test scores shown first, and validation
scores shown in parentheses. The results are interesting, showing that the model performs better
on R, Python and Ruby than C#, Java and Scala. This might be due to the fact that the former are
dynamically typed languages, and therefore have less boilerplate associated with type references
that could make it easier to make summaries.

Language BLEU-4

Ruby 20.3 (18.7)
Python 21.2(17.4)
R 23.2(23.0)
Javascript | 19.3 (17.7)
Java 13.5(11.7)
Scala 14.8 (12.4)
C# 13.3 (13.9)
Table 1: BLEU Scores by Language

4 Conclusion

In this work, we trained a sequence to sequence neural attention model for summarizing source
code commits and pull requests. A future direction might be to add tags for commits, such as “bug-
fix”. In particular, it might be possible to couple the commits with the issues, and find commits
that are related to specific resolutions of outstanding issues. Another interesting use case might be
code-retrieval, where the user could provide natural language summaries and obtain scored retrieval
rankings of source code that corresponds to that query. In this case, rather than search through the
natural language space n* € Uy for the sentence that maximizes the score in (1), we may instead
want to retrieve the highest scoring code chunk ¢* € U¢ that maximizes the score function:

¢* = argmax_s (¢,n) .

Such a model would allow the user to describe a desired piece of code (or repository of code) in
natural language, and the model would retrieve the closest match to the description in terms of the
code embeddings. However, in this case we may want to generalize beyond beam search we might
be more limited in the context of the large feature space provided by code diffs (this is my hunch at
least). We save these directions for future projects!

References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR Proceedings, 2015. 1,2

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org. 4

[3] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR 13, pages 233236, Piscataway, NJ, USA,
2013. IEEE Press. 2

[4] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source
code using a neural attention model. In Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, volume 1, pages 2073-2083, 2016. 2

[5] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, Luke Zettlemoyer, and Michael D.
Ernst. Program synthesis from natural language using recurrent neural networks. Technical
Report UW-CSE-17-03-01, University of Washington Department of Computer Science and
Engineering, Seattle, WA, USA, March 2017. 2

[6] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685, 2015. 2

[7] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104-3112, 2014. 2

[8] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot
Topics in Cloud Computing, HotCloud’ 10, pages 10-10, Berkeley, CA, USA, 2010. USENIX
Association. 2

http://www.deeplearningbook.org

	Introduction
	Background and Related Work

	Methodology
	GitHub Data and REST API
	Exploratory Data Analysis
	Sequence to Sequence Attention Models

	Training
	Initialization and Decoding
	Model Evaluation

	Conclusion

