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Abstract

We build a neural conversation system using a deep LST Seq2Seq model with
an attention mechanism applied on the decoder. We further improve our system
by introducing beam search and re-ranking with a Mutual Information objective
function method to search for relevant and coherent responses. We find that both
models achieve reasonable results after being trained on a domain-specific dataset
and are able to pick up contextual information specific to the dataset. The second
model, in particular, has promise with addressing the I don’t know” problem and
de-prioritizing over-generic responses.

1 Introduction

Chatbots, programs that simulate human beings in conversations, have been gaining traction in the
tech community in recent years. Ever since the first Verbot, Julia was created by Michael Maudlin in
1994, researchers have made various attempts to design and implement such programs. Researchers
have sought out the proper configurations for a chatbot to exhibit intelligent behaviors equivalent to
or indistinguishable from those of a human, and thus to pass the well known Turing test.

In general however, holding meaningful conversations with humans is hard. Traditional statistical
models often struggle to understand humans’ meanings and intentions (semantic information) in
addition to the syntactic structures of their remarks (pattern matching). With recent developments in
deep neural networks and recurrent neural networks, researchers have new advanced tools to work
in this field and have developed new strategies to tackle automatic dialogue generation.

In this paper, we apply a deep LSTM Seq2Seq model with an attention-based decoder in order to
tackle this task of dialogue generation. In addition, we improve on this model by applying beam
search over mutual information between statement and responses to rank optimal responses. We
find that using mutual information improves model outputs by de-prioritizing generic responses.

2 Previous Work

Researchers have developed many neural dialogue systems in the past. The vast majority of such
neural systems use Seq2Seq as a backbone, which allows for mappings from entire sequences of
words or characters to other sequences. In their paper ”A Neural Conversational Model”, Vinyals
et. al [8]] demonstrate their neural dialogue system on several datasets. In particular, they show that
their model successfully incorporates contextual information in conversation, such as discussing
operating systems when trained on an IT help desk training set.

Some previous work has been done with re-ranking Seq2Seq model outputs using additional syn-
tactic and semantic features. Li et al, in their paper ”A Diversity-Promoting Objective Function for
Neural Conversation Models” [3]], describe how usual Seq2Seq networks approximate the proba-
bility of a target sentence given a source sentence. They augment this by linearly combining the



Seq2Seq model output with an anti-language model, and punish over-generic responses generated
by their conversation model.

In their paper "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Net-
work Models”, Serban et. al [7] show how using dialogue-by-dialogue level encoding and decoding,
in addition to word-by-word level encoding and decoding, can lead to a model competitive with the
state of the art. Serban et. al make use of a hierarchical recurrent encoder-decoder to predict individ-
ual dialogues utilizing a context RNN, which has previously been used for predicting search queries
given a history of queries.

Some researchers have made advancements using reinforcement learning to improve their models.
Li et. al, in their paper "Dialogue Learning with Human-in-the-Loop” [4], describe how reinforce-
ment learning can improve the process of learning and yield better results compared with training
on static datasets.

Work has also done to apply the Generative Adversarial Network framework, which has previously
had success with image processing, to neural dialogue generation. Li et. al [S] demonstrate some
success of their adversarial model; however, they concede that more work is required with GANS to
yield significant performance boosts in the realm of natural language processing.

3 Dataset

We use the Ubuntu Dialogue Corpus [6]], a collection of two way multi-turn dialogues. It contains
almost 1 million dialogues, with over 7 million utterances and 100 million words. For efficiency,
we only consider the 40,000 most commonly used words within the corpus, and replace other words
with a special _.UNK token.

For simplicity, our model does not make use of conversation-level features. We instead split each
of the dialogues into pairs of statements and responses (e.g. a statement by person A, followed by
a response by person B). As shown in table (1| the median statement length is 16, and the median
corresponding response length is 14. From the descriptive statistics presented below in table 2] we
see no obvious association between statement length and response length.

This dataset is notable in that it includes domain-specific knowledge relevant to Ubuntu and IT,
which we find influences the quality of the dialogues generated by our model. For example, the
dataset includes many question-answer pairs due to its IT help desk characteristics. As a result, our
model is more capable of handling question inputs as opposed to pure statement inputs.

25" percentile  50™ percentile  75™ percentile
Statement Length 9 16 28
Response Length 7 14 24

Table 1: Statement and response length distribution within the Ubuntu Dialogue Corpus

Statement Length
1-9 10-16 17-28 >29
1—-7 | 148191 110588 97043 89374
8§ —14 | 142557 118785 117023 120353
15—24 | 111244 97935 100397 102873
> 25 103624 94933 102708 114497

Response Length

Table 2: Correlation between statement and response length

4 Model

We develop two models in this paper. The first is a baseline deep LSTM Seq2Seq model with an
attention mechanism applied to the decoder. The second is a more advanced model which builds
on the first by examining the mutual information contribution between statements and predicted
responses.



4.1 Baseline Model

Our baseline model is a 3-layered deep LSTM Seq2Seq model using 500-dimensional randomly
initialized word vectors and a 500-dimensional hidden state. The input statement is padded with a
special padding character _PAD to the maximum length before feeding into the Seq2Seq model. The
output is generated word by word, until a special character _EOU, end of utterance is generated. The
Seq2Seq model is well-suited for the dialogue generation task, as it enables end-to-end training and
evaluation between input and output sentences.
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Figure 1: An example Seq2Seq architecture [1]]

We apply a static dropout mask with a 50% dropout rate on each RNN cell during training to prevent
overfitting; the same dropout rate is used for each of the LSTM cells regardless of the timesteps. This
dropout is especially critical for dialogue generation. Neural dialogue systems can be susceptible
to the so-called "I don’t know” problem [7], where such systems repeatedly utter generic phrases
such as ”’I don’t know”, which are simply statistically likely to appear and not necessarily useful.
Dropout improves the situation by coercing RNN units to understand more complicated syntactic
and semantic features.

Next, we apply an attention mechanism on the decoder. This allows the decoder to predict outputs
not only by using the hidden states of the decoder RNN of the Seq2Seq model, but also by using an
additional context state to keep track of information possibly more relevant at certain timesteps. The
attention decoder is based off of improvements on the Seq2Seq decoder as explored by Bahdanau
et. al [2].
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Figure 2: An example decoder architecture using attention [[L]

Finally, to train the model more efficiently and balance the length of real inputs versus padding
characters, we split the dataset examples into four buckets. For example, a training example pair
with a statement length of 9 and a response length of 11 would be placed in the second bucket, and
both the statement and response will be padded with a special _PAD token to reach 15 words each.
The bucket sizes that we used for this model are listed in table 3l

To evaluate our model, we compute the perplexity of the model over our validation sets, and examine
the perplexity for each bucket. We also perform qualitative analyses for a randomly selected test set
to examine both grammatical soundness and logical relevance of our model outputs.

4.2 Re-ranking using Mutual Information Contribution Score

Dialogue generation systems often suffer from the excessive output of generic default safety re-
sponses, such as I don’t know”. This is often because such responses are the most statistically
likely to appear in a training set. Unique answers are usually specific to individual questions, mak-
ing it challenging for models to learn the intricate patterns and logic correlations between input
statements and output responses. Instead, the models default back to the most common responses in



Bucket Number Criteria Number of Training Examples
! response ength no reatr han 10 246774
2| Sesponse length no roate thn 15 273213
’ Tesponse ength no reatr han 20 262,863
+ | Sesponse ength no reatr han 30 399,524

Table 3: Descriptive statistics for each bucket.

the dataset I don’t know” (or “what is the problem”, as we have observed for the Ubuntu dataset).
We approach this problem in our advanced model and add on a beam search mechanism to search
for responses with the highest mutual information contribution scores.

We observe that the base Seq2Seq model, in essence, computes the probability of observing a re-
sponse 7 given an input statement s; with probability P(r|s;). It then tries to find the response 7;
that maximizes the conditional probability #; = arg max,cr P(r|s;).

However as we have seen, for a substantial number of statements s;, 7; is rather generic, such
as ’I don’t know” or ”what is the problem”. In order to capture the high level logic correlation
between user inputs and proper output responses, we reformulate our objective function as using the
mutual information statistic between the statement and response pair (s;,r;), accounting for both
the probability of observing the response given the input statement P(7;|s;), and the probability of
the input statement given the output response P(s;|r;).

Notice that a statement-response pair (s;, ;) contributes

P(si,1i)
P(s;)P(r:)
P(r;|si)P(s:)

P(s;)P(r)
o P(ri|s;)(In P(r;|s;) — In P(r;))

MI(si,r;) = P(si,r;) In(

= P(si)P(ri|s;) In( )

Hence, our new desired choice of response 7; is

= argrglea%MI(Si,r)

= argrrpe%%(P(Hsi)(ln P(r|s;) —In P(r))

the response (out of all possible response sequences) that maximizes the mutual information contri-
bution score. Here, P(r|s;) can be computed from our previous Seq2Seq model. We can compute
P(r) using a probabilistic language model that assigns cost measurements to sentences. For our ad-
vanced model we utilized a reproduction of a pre-existing language model developed by Zarembea, et.
al [9], and trained this language model on the same Ubuntu Dialogue Corpus of which the Seq2Seq
model is trained. Since generic responses are fairly common within the dataset, we would expect
the language model to assign a relatively low score to these responses, and the mutual information
objective function would punish such outcomes.

One practical concern that we have to resolve is that searching over the enormous response space
‘R is virtually impossible. Thus, we first perform beam search on the Seq2Seq model for the top
results that maximize the first part P(r|s;) In P(r|s;). In the second step, utilizing the results from
the language model, we re-rank them to achieve the top responses under the mutual information
objective function. Due to limitations of time and resources, we set our beam size to 50, as compared
to 800 used in Li’s paper [3].



5 Experiments

5.1 Perplexity Analyses of Baseline Model

We evaluated our first model using perplexity, a measure of prediction error. A higher perplexity
indicates that a particular sentence is more difficult to predict and indicates a greater degree of
error. We display the achieved perplexity of the model for each of the buckets after 50,000 training
iterations in table[d] and the training and dev perplexities over time in figure 3]

Number | Maximum Word Length | Perplexity
1 10 11.46
2 15 20.85
3 20 27.10
4 30 30.84

Table 4: Perplexity after 50,000 training iterations
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Figure 3: Training and dev perplexity over training iterations

As we can see, the validation perplexity for bucket 1 is the smallest, while the validation perplexity
for bucket 4 is the greatest. This makes intuitive sense; for longer statement and response pairs, it is
more difficult for the decoder to apply attention to the appropriate section of a statement to determine
the appropriate output. In addition, for longer sequences, relevant information in the hidden state
may not be persisted well through the LSTM.

In addition, the training perplexity over all time steps lies at approximately the average of the per-
plexities for each of the individual buckets. This suggests that the model is not overfitting to the
training set after convergence.

5.2 Qualitative Analysis of Both Models

We qualitatively analyze our model outputs over a set of selected validation inputs to determine the
qualities of our models. Two characteristic examples are presented here for detailed analysis.

In our first example, the model demonstrates that it has learned contextual information from the
Ubuntu Dialogues Corpus and is able to output a command specific to the IT help desk context. In
fact, our model has successfully learned how to use command line arguments, emojis, and other



Input Statement Baseline Model

Advanced Model

sudo apt-get install ubuntu-desktop | sudo apt-get install ubuntu-desktop

How do I install Ubuntu on my computer? | sudo apt-get install openssh-server | sudo apt-get install openssh-server

install apt-get install Ubuntu-server | install apt-get install Ubuntu-server

elements specific to the online help desk setup. Further notice that since the response is not generic,
adding mutual information re-ranking does not distort the top outcomes here.

Input Baseline Model Advanced Model
what is the problem? what kind the problem?
what ’ the problem? install is the problem?

T'want to play mp3 flash and wmw/avi what version the problem? _unk is the problem?

mplayer is the problem?

One general observation that we see within our testing set is that when presented with a statement as
opposed to a question, the Seq2Seq model is more likely to output a generic response, such as "what
is the problem?”. We believe that this phenomenon is due to the inherent bias within our training
set, which includes many question-answer pairs.

One such example of this behavior is presented in the table above; the baseline model surfaces the
over-generic default response of “what is the problem?”, while the advanced model with re-ranking
offers more interesting responses, such as “mplayer is the problem?”. Notice that the improvement
is small, since the top 50 responses from the Seq2Seq models are syntactically similar, and the
majority of responses contain the phrase “be the problem”. Nonetheless, our re-ranking is able to
prioritize the association between “mp3”, "flash”, and "wmw/avi” with “mplayer” and increases its
ranking in the list. Were we to increase the beam size and enlarge our search space, we may be able
to find even more relevant and interesting results.

Still, the output from the advanced model is not perfect, as shown by outputs such as what kind the
problem?”. Since we incorporate an anti-language model —P(r) in our objective function, certain
ungrammatical sentences also obtain a boost in MI scores. This suggests that in future iterations,
we may want to incorporate the window function — f(P(r)) or use a more sophisticated language
model to filter out extreme language scores and less coherent sentences from our search space.
Alternatively, improving the original model to output more grammatical responses can also prune
the search space, and therefore improve the final outputs.

5.3 Quantitative Analysis (Lack of a good measurement)

Throughout the project, we struggled to find an appropriate quantitative measurement to evaluate
our models. Though the BLEU score is often used for Seq2Seq models such as Neural Machine
Translation models, it is not necessarily a good statistic for our model. Since the possible response
space is enormous, arguably there is no categorically right or categorically wrong response in con-
versations. We resort to the rather inefficient manual scoring and qualitative analysis approach due
to the lack of alternatives. Had time allowed, we would have spent more time searching for and
defining a better quality measurement to evaluate our models.

6 Conclusion

As shown, we can achieve reasonable performance using a neural dialogue generation model, and
have improved upon this model using the beam search over a mutual information objective function.
Still, there is significant room for improvement within both of our models. Both models still, to
some extent, suffer from the I don’t know” problem. We may be able to resolve this by increasing
the beam size to increase the search space for the mutual information re-ranking. Using a more
complex language model could also improve the mutual information scoring function.

The Ubuntu Dialogue Corpus itself may be a source of this problem, as dialogues present in the cor-
pus are often not representative of “real-life” conversations between individuals. Using a different
dialogue corpus for training could reveal other complexities in our model to address.



In the future, we may experiment with using pre-trained word vectors, such as using word2vec vec-
tors trained on the Google News corpus. This may help with capturing semantic information within
dialogues. We may also experiment with a hierarchical structure to include semantic information
over multiple dialogues, as done by Serban et. al [7]. This could allow the model to better keep
track of information across multiple dialogues.

7 Contributions

For the baseline model, Harrison wrote and edited scripts and ran experiments for the models, while
Chenye designed the structure of the models and looked up relevant papers online. For the advanced
model, Harrison wrote and edited the codes for the language model, while Chenye implemented
the beam search and incorporated the two RNNs to generate the final results. We would like to
thank the CS224n professors and TA’s for providing guidance throughout the process of design and
implementation.
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